Skip to main content

Advertisement

Log in

A practical guide for anesthetic management during intraoperative motor evoked potential monitoring

Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Postoperative motor dysfunction can develop after spinal surgery, neurosurgery and aortic surgery, in which there is a risk of injury of motor pathway. In order to prevent such devastating complication, intraoperative monitoring of motor evoked potentials (MEP) has been conducted. However, to prevent postoperative motor dysfunction, proper understanding of MEP monitoring and proper anesthetic managements are required. Especially, a variety of anesthetics and neuromuscular blocking agent are known to attenuate MEP responses. In addition to the selection of anesthetic regime to record the baseline and control MEP, the measures to keep the level of hypnosis and muscular relaxation at constant are crucial to detect the changes of MEP responses after the surgical manipulation. Once the changes of MEP are observed based on the institutional alarm criteria, multidisciplinary team members should share the results of MEP monitoring and respond to check the status of monitoring and recover the possible motor nerve injury. Prevention of MEP-related adverse effects is also important to be considered. The Working Group of Japanese Society of Anesthesiologists (JSA) developed this practical guide aimed to help ensure safe and successful surgery through appropriate anesthetic management during intraoperative MEP monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Merton PA, Morton HB. Stimulation of the cerebral cortex in the intact human subject. Nature. 1980;285:227.

    CAS  Google Scholar 

  2. Taniguchi M, Cedzich C, Schramm J. Modification of cortical stimulation for motor evoked potentials under general anesthesia: technical description. Neurosurgery. 1993;32:219–26.

    CAS  Google Scholar 

  3. Macdonald DB, Skinner S, Shils J, Yingling C. American Society of Neurophysiological Monitoring. Intraoperative motor evoked potential monitoring—a position statement by the American Society of Neurophysiological Monitoring. Clin Neurophysiol. 2013;124:2291–316.

    CAS  PubMed  Google Scholar 

  4. Sloan TB, Heyer EJ. Anesthesia for intraoperative neurophysiologic monitoring of the spinal cord. J Clin Neurophysiol. 2002;19:430–43.

    PubMed  Google Scholar 

  5. Haghighi SS, Green KD, Oro JJ, Drake RK, Kracke GR. Depressive effect of iso urane anesthesia on motor evoked potentials. Neurosurgery. 1990;26:993–7.

    CAS  PubMed  Google Scholar 

  6. Haghighi SS, Sirintrapun SJ, Keller BP, Oro JJ, Madsen R. Effect of desflurane anesthesia on transcortical motor evoked potentials. J Neurosurg Anesthesiol. 1996;8:47–51.

    CAS  PubMed  Google Scholar 

  7. Kalkman CJ, Drummond JC, Ribberink AA, Patel PM, Sano T, Bickford RG. Effects of propofol, etomidate, midazolam, and fentanyl on motor evoked responses to transcranial elec- trical or magnetic stimulation in humans. Anesthesiology. 1992;76:502–9.

    CAS  PubMed  Google Scholar 

  8. Kawaguchi M, Inoue S, Kakimoto M, Kitaguchi K, Furuya H, Morimoto T, Sakaki T. The effect of sevoflurane on myogenic motor-evoked potentials induced by single and paired trans- cranial electrical stimulation of the motor cortex during nitrous oxide/ketamine/fentanyl anesthesia. J Neurosurg Anesthesiol. 1998;10:131–6.

    CAS  PubMed  Google Scholar 

  9. Nathan N, Tabaraud F, Lacroix F, Mouliès D, Viviand X, Lansade A, Terrier G, Feiss P. Influence of propofol concentrations on multipulse transcranial motor evoked potentials. Br J Anaesth. 2003;91:493–7.

    CAS  PubMed  Google Scholar 

  10. Scheufler KM, Zentner J. Total intravenous anesthesia for intraoperative monitoring of the motor pathways: an integral view combining clinical and experimental data. J Neurosurg. 2002;96:571–9.

    CAS  PubMed  Google Scholar 

  11. Fahy BG, Chau DF. The technology of processed electroencephalogram monitoring devices for assessment of depth of anesthesia. Anesth Analg. 2018;126:111–7.

    PubMed  Google Scholar 

  12. Ohtaki S, Akiyama Y, Kanno A, Noshiro S, Hayase T, Yamakage M, Mikuni N. The influence of depth of anesthesia on motor evoked potential response during awake craniotomy. J Neurosurg. 2017;126:260–5.

    PubMed  Google Scholar 

  13. Naguib M, Brull SJ, Kopman AF, Hunter JM, Fülesdi B, Arkes HR, Elstein A, Todd MM, Johnson KB. Consensus statement on perioperative use of neuromuscular monitoring. Anesth Analg. 2018;127(1):71–80.

    PubMed  Google Scholar 

  14. Sloan TB. Muscle relaxant use during intraoperative neurophysiologic monitoring. J Clin Monit Comput. 2013;27:35–46.

    PubMed  Google Scholar 

  15. Pavoni V, Gianesello L, De Scisciolo G, Provvedi E, Horton D, Barbagli R, Conti P, Conti R, Giunta F. Reversal of profound and "deep" residualrocuronium-induced neuromuscular blockade by sugammadex: a neurophysiological study. Minerva Anestesiol. 2012;78:542–9.

    CAS  PubMed  Google Scholar 

  16. Cammu G, de Kam PJ, De Graeve K, van den Heuvel M, Suy K, Morias K, Foubert L, Grobara P, Peeters P. Repeat dosing of rocuronium 1.2 mg kg−1 after reversal of neuromuscular block by sugammadex 4.0 mg kg−1 in anaesthetized healthy volunteers: a modelling-based pilot study. Br J Anaesth. 2010;105:487–92.

    CAS  PubMed  Google Scholar 

  17. Askin T, Unver S, Oguz D, Kutay K. Case report: neuromuscular block induced by rocuronium following sugammadex administration. J Clin Anesth. 2017;37:166–7.

    PubMed  Google Scholar 

  18. Iwasaki H, Sasakawa T, Takahoko K, Takagi S, Nakatsuka H, Suzuki T, Iwasaki H. A case series of re-establishment of neuromuscular block with rocuronium after sugammadex reversal. J Anesth. 2016;30:534–7.

    PubMed  Google Scholar 

  19. Fabregat-López J, Veiga-Ruiz G, Dominguez-Serrano N, García-Martinez MR. Re-establishment of neuromuscular block by rocuronium aftersugammadex administration. Can J Anaesth. 2011;58(7):658.

    PubMed  Google Scholar 

  20. Matsuki G, Takahata O, Iwasaki H. Repeat dosing of rocuronium after reversal of neuromuscular block by sugammadex. Can J Anaesth. 2011;58:769–70.

    PubMed  Google Scholar 

  21. Kalkman CJ, Drummond JC, Kennelly NA, Patel PM, Partridge B. Intraoperative monitoring of tibialis anterior muscle motor evoked responses to transcranial electrical stimulation during partial neuromuscular blockade. Anesth Analg. 1992;75:584–9.

    CAS  PubMed  Google Scholar 

  22. Legatt AD, Emerson RG, Epstein CM, MacDonald DB, Deletis V, Bravo RJ, López JR. ACNS guideline: transcranial electrical stimulation motor evoked potential monitoring. J Clin Neurophysiol. 2016;33:42–50.

    PubMed  Google Scholar 

  23. Chong CT, Manninen P, Sivanaser V, Subramanyam R, Lu N, Venkatraghavan L. Direct comparison of the effect of desflurane and sevoflurane on intraoperative motor-evoked potentials monitoring. J Neurosurg Anesthesiol. 2014;26:306–12.

    PubMed  Google Scholar 

  24. Sloan TB, Toleikis JR, Toleikis SC, Koht A. Intraoperative neurophysiological monitoring during spine surgery with total intravenous anesthesia or balanced anesthesia with 3% desflurane. J Clin Monit Comput. 2015;29:77–85.

    PubMed  Google Scholar 

  25. Martin DP, Bhalla T, Thung A, Rice J, Beebe A, Samora W, Klamar J, Tobias JD. A preliminary study of volatile agents or total intravenous anesthesia for neurophysiological monitoring during posterior spinal fusion in adolescents with idiopathic scoliosis. Spine (Phila Pa 1976). 2014;39:E1318–24.

    Google Scholar 

  26. Grottke O, Dietrich PJ, Wiegels S, Wappler F. Intraoperative wake-up test and postoperative emergence in patients undergoing spinal surgery: a comparison of intravenous and inhaled anesthetic techniques using short-acting anesthetics. Anesth Analg. 2004;99:1521–7.

    PubMed  Google Scholar 

  27. Rigouzzo A, Girault L, Louvet N, Servin F, De-Smet T, Piat V, Seeman R, Murat I, Constant I. The relationship between bispectral index and propofol during target-controlled infusion anesthesia: a comparative study between children and young adults. Anesth Analg. 2008;106:1109–16.

    CAS  PubMed  Google Scholar 

  28. Zuccaro M, Zuccaro J, Samdani AF, Pahys JM, Hwang SW. Intraoperative neuromonitoring alerts in a pediatric deformity center. Neurosurg Focus. 2017;43:E8.

    PubMed  Google Scholar 

  29. Kobayashi S, Matsuyama Y, Shinomiya K, Kawabata S, Ando M, Kanchiku T, Saito T, Takahashi M, Ito Z, Muramoto A, Fujiwara Y, Kida K, Yamada K, Wada K, Yamamoto N, Satomi K, Tani T. A new alarm point of transcranial electrical stimulation motor evoked potentials for intraoperative spinal cord monitoring: a prospective multicenter study from the Spinal Cord Monitoring Working Group of the Japanese Society for Spine Surgery and Related Research. J Neurosurg Spine. 2014;20:102–7.

    PubMed  Google Scholar 

  30. Thirumala PD, Crammond DJ, Loke YK, Cheng HL, Huang J, Balzer JR. Diagnostic accuracy of motor evoked potentials to detect neurological deficit during idiopathic scoliosis correction: a systematic review. J Neurosurg Spine. 2017;26:374–83.

    PubMed  Google Scholar 

  31. Tamkus AA, Rice KS, Kim HL. Differential rates of false-positive findings in transcranial electric motor evoked potential monitoring when using inhalational anesthesia versus total intravenous anesthesia during spine surgeries. Spine J. 2014;14:1440–6.

    PubMed  Google Scholar 

  32. Langeloo DD, Journée HL, de Kleuver M, Grotenhuis JA. Criteria for transcranial electrical motor evoked potential monitoring during spinal deformity surgery a review and discussion of the literature. Neurophysiol Clin. 2007;37:431–9.

    PubMed  Google Scholar 

  33. Quiñones-Hinojosa A, Lyon R, Zada G, Lamborn KR, Gupta N, Parsa AT, McDermott MW, Weinstein PR. Changes in transcranial motor evoked potentials during intramedullary spinal cord tumor resection correlate with postoperative motor function. Neurosurgery. 2005;56:982–93.

    PubMed  Google Scholar 

  34. Ito Z, Imagama S, Sakai Y, Katayama Y, Wakao N, Ando K, Hirano K, Tauchi R, Muramoto A, El Zahlawy H, Matsuyama Y, Ishiguro N. A new criterion for the alarm point for compound muscle action potentials. J Neurosurg Spine. 2012;17:348–56.

    PubMed  Google Scholar 

  35. Malcharek MJ, Loeffler S, Schiefer D, Manceur MA, Sablotzki A, Gille J, Pilge S, Schneider G. Transcranial motor evoked potentials during anesthesia with desflurane versus propofol—a prospective randomized trial. Clin Neurophysiol. 2015;126:1825–32.

    CAS  PubMed  Google Scholar 

  36. Hernández-Palazón J, Izura V, Fuentes-García D, Piqueras-Pérez C, Doménech-Asensi P, Falcón-Araña L. Comparison of the effects of propofol and sevoflurane combined with remifentanil on transcranial electric motor-evoked and somatosensory-evoked potential monitoring during brainstem surgery. J Neurosurg Anesthesiol. 2015;27:282–8.

    PubMed  Google Scholar 

  37. Szelényi A, Hattingen E, Weidauer S, Seifert V, Ziemann U. Intraoperative motor evoked potential alteration in intracranial tumor surgery and its relation to signal alteration in postoperative magnetic resonance imaging. Neurosurgery. 2010;67:302–13.

    PubMed  Google Scholar 

  38. Zhou HH, Kelly PJ. Transcranial electrical motor evoked potential monitoring for brain tumor resection. Neurosurgery. 2001;48:1075–80 (discussion 1080-1).

    CAS  PubMed  Google Scholar 

  39. Kombos T, Suess O, Ciklatekerlio O, Brock M. Monitoring of intraoperative motor evoked potentials to increase the safety of surgery in and around the motor cortex. J Neurosurg. 2001;95:608–14.

    CAS  PubMed  Google Scholar 

  40. Guo L, Gelb AW. The use of motor evoked potential monitoring during cerebral aneurysm surgery to predict pure motor deficits due to subcortical ischemia. Clin Neurophysiol. 2011;122:648–55.

    PubMed  Google Scholar 

  41. Neuloh G, Pechstein U, Cedzich C, Schramm J. Motor evoked potential monitoring with supratentorial surgery. Neurosurgery. 2007;61:337–46 (discussion 346-8).

    PubMed  Google Scholar 

  42. Seubert CN, Mahla ME. Neurologic monitoring. In: Miller RD, editor. Miller’s anesthesia. 8th ed. Philadelphia: Elsevier Churchill-Livingston; 2014. p. 1487–523.

    Google Scholar 

  43. Lo YL, Dan YF, Tan YE, Nurjannah S, Tan SB, Tan CT, Raman S. Intraoperative motor-evoked potential monitoring in scoliosis surgery: comparison of desflurane/nitrous oxide with propofol total intravenous anesthetic regimens. J Neurosurg Anesthesiol. 2006;18:211–4.

    PubMed  Google Scholar 

  44. Inoue S, Kawaguchi M, Kakimoto M, Sakamoto T, Kitaguchi K, Furuya H, Morimoto T, Sakaki T. Amplitudes and intrapatient variability of myogenic motor evoked potentials to transcranial electrical stimulation during ketamine/N2O- and propofol/N2O-based anesthesia. J Neurosurg Anesthesiol. 2002;14:213–7.

    PubMed  Google Scholar 

  45. Kawaguchi M, Sakamoto T, Inoue S, Kakimoto M, Furuya H, Morimoto T, Sakaki T. Low dose propofol as a supplement to ketamine-based anesthesia during intraoperative monitoring of motor-evoked potentials. Spine (Phila Pa 1976). 2000;25:974–9.

    CAS  Google Scholar 

  46. Yamamoto Y, Kawaguchi M, Hayashi H, Horiuchi T, Inoue S, Nakase H, Sakaki T, Furuya H. The effects of the neuromuscular blockade levels on amplitudes of posttetanic motor-evoked potentials and movement in response to transcranial stimulation in patients receiving propofol and fentanyl anesthesia. Anesth Analg. 2008;106:930–4.

    CAS  PubMed  Google Scholar 

  47. Kim WH, Lee JJ, Lee SM, Park MN, Park SK, Seo DW, Chung IS. Comparison of motor-evoked potentials monitoring in response to transcranial electrical stimulation in subjects undergoing neurosurgery with partial vs no neuromuscular block. Br J Anaesth. 2013;110:567–76.

    CAS  PubMed  Google Scholar 

  48. Kakinohana M, Nakamura S, Fuchigami T, Miyata Y, Sugahara K. Influence of the descending thoracic aortic crossclamping on bispectral index value and plasma Propofol concentration in humans. Anesthesiology. 2006;104:939–43.

    PubMed  Google Scholar 

  49. Coselli JS, LeMaire SA, Köksoy C, Schmittling ZC, Curling PE. Cerebrospinal fluid drainage reduces paraplegia after thoracoabdominal aortic aneurysm repair: results of a randomized clinical trial. J Vasc Surg. 2002;35:631–9.

    PubMed  Google Scholar 

  50. Mehmedagic I, Resch T, Acosta S. Complications to cerebrospinal fluid drainage and predictors of spinal cord ischemia in patients with aortic disease undergoing advanced endovascular therapy. Vasc Endovascular Surg. 2013;47:415–22.

    PubMed  Google Scholar 

  51. Fedorow CA, Moon MC, Mutch WA, Grocott HP. Lumbar cerebrospinal fluid drainage for thoracoabdominal aortic surgery: rationale and practical considerations for management. Anesth Analg. 2010;111:46–58.

    PubMed  Google Scholar 

  52. Estrera AL, Sheinbaum R, Miller CC, Azizzadeh A, Walkes JC, Lee TY, Kaiser L, Safi HJ. Cerebrospinal fluid drainage during thoracic aortic repair: safety and current management. Ann Thorac Surg. 2009;88:9–15.

    PubMed  Google Scholar 

  53. Etz CD, Zoli S, Bischoff MS, Bodian C, Di Luozzo G, Griepp RB. Measuring the collateral network pressure to minimize paraplegia risk in thoracoabdominal aneurysm resection. J Thorac Cardiovasc Surg. 2010;140:S125–30.

    PubMed  Google Scholar 

  54. Tanaka A, Safi HJ, Estrera AL. Current strategies of spinal cord protection during thoracoabdominal aortic surgery. Gen Thorac Cardiovasc Surg. 2018;66:307–14.

    PubMed  Google Scholar 

  55. Wong CS, Healy D, Canning C, Coffey JC, Boyle JR, Walsh SR. A systematic review of spinal cord injury and cerebrospinal fluid drainage after thoracic aortic endografting. J Vasc Surg. 2012;56:1438–47.

    PubMed  Google Scholar 

  56. Szelényi A, Kothbauer KF, Deletis V. Transcranial electric stimulation for intraoperative motor evoked potential monitoring: stimulation parameters and electrode montages. Clin Neurophysiol. 2007;118:1586–95.

    PubMed  Google Scholar 

  57. Macdonald DB, Al Zayed Z, Al Saddigi A. Four-limb muscle motor evoked potential and optimized somatosensory evoked potential monitoring with decussation assessment: results in 206 thoracolumbar spine surgeries. Eur Spine J. 2007;16(Suppl 2):S171–87.

    PubMed  Google Scholar 

  58. Jafarzadeh F, Bashir M, Yan T, Harrington D, Field ML, Kuduvalli M, Oo A, Desmond M. Setting up and utilizing a service for measuring perioperative transcranial motor evoked potentials during thoracoabdominal aortic surgery and thoracic endovascular repair. Interact Cardiovasc Thorac Surg. 2014;18:748–56.

    PubMed  Google Scholar 

  59. Tanaka Y, Kawaguchi M, Noguchi Y, Yoshitani K, Kawamata M, Masui K, Nakayama T, Yamada Y. Systematic review of motor evoked potentials monitoring during thoracic and thoracoabdominal aortic aneurysm open repair surgery: a diagnostic meta-analysis. J Anesth. 2016;30:1037–50.

    PubMed  Google Scholar 

  60. Tanaka H, Ogino H, Minatoya K, Matsui Y, Higami T, Okabayashi H, Saiki Y, Aomi S, Shiiya N, Sawa Y, Okita Y, Sueda T, Akashi H, Kuniyoshi Y, Katsumata T. Japanese Study of Spinal Cord Protection in Descending and Thoracoabdominal Aortic Repair investigators. The impact of preoperative identification of the Adamkiewicz artery on descending and thoracoabdominal aortic repair. J Thorac Cardiovasc Surg. 2016;151:122–8.

    PubMed  Google Scholar 

  61. Griepp RB, Griepp EB. Spinal cord perfusion and protection during descending thoracic and thoracoabdominal aortic surgery: the collateral network concept. Ann Thorac Surg. 2007;83:S865–9.

    PubMed  Google Scholar 

  62. Etz CD, Weigang E, Hartert M, Lonn L, Mestres CA, Di Bartolomeo R, Bachet JE, Carrel TP, Grabenwöger M, Schepens MA, Czerny M. Contemporary spinal cord protection during thoracic and thoracoabdominal aortic surgery and endovascular aortic repair: a position paper of the vascular domain of the European Association for Cardio-Thoracic Surgery. Eur J Cardiothorac Surg. 2015;47:943–57.

    PubMed  Google Scholar 

  63. Etz CD, Halstead JC, Spielvogel D, Shahani R, Lazala R, Homann TM, Weisz DJ, Plestis K, Griepp RB. Thoracic and thoracoabdominal aneurysm repair: is reimplantation of spinal cord arteries a waste of time? Ann Thorac Surg. 2006;82:1670–7.

    PubMed  Google Scholar 

  64. Ohtsubo S, Itoh T, Okazaki Y, Matsumoto K, Kato A. Selective perfusion of preoperatively identified artery of Adamkiewicz during repair of thoracoabdominal aortic aneurysm. J Thorac Cardiovasc Surg. 2004;127:272–4.

    PubMed  Google Scholar 

  65. Wynn M, Acher C, Marks E, Acher CW. The effect of intercostal artery reimplantation on spinal cord injury in thoracoabdominal aortic aneurysm surgery. J Vasc Surg. 2016;64:289–96.

    PubMed  Google Scholar 

  66. Maurel B, Delclaux N, Sobocinski J, Hertault A, Martin-Gonzalez T, Moussa M, Spear R, Le Roux M, Azzaoui R, Tyrrell M, Haulon S. The impact ofearly pelvic The impact of early pelvic and lower limb reperfusion and attentive peri-operative management on the incidence of spinal cord ischemia duringthoracoabdominal aortic aneurysm endovascular repair. Eur J Vasc Endovasc Surg. 2015;49:248–54.

    CAS  PubMed  Google Scholar 

  67. Meylaerts SA, De Haan P, Kalkman CJ, Lips J, De Mol BA, Jacobs MJ. The influence of regional spinal cord hypothermia on transcranial myogenic motor-evoked potential monitoring and the efficacy of spinal cord ischemia detection. J Thorac Cardiovasc Surg. 1999;118:1038–45.

    CAS  PubMed  Google Scholar 

  68. Shinzawa M, Yoshitani K, Minatoya K, Irie T, Ogino H, Ohnishi Y. Changes of motor evoked potentials during descending thoracic and thoracoabdominal aortic surgery with deep hypothermic circulatory arrest. J Anesth. 2012;26:160–7.

    PubMed  Google Scholar 

  69. Lieberman JA, Lyon R, Feiner J, Diab M, Gregory GA. The effect of age on motor evoked potentials in children under propofol/isoflurane anesthesia. Anesth Analg. 2006;103:316–21.

    CAS  Google Scholar 

  70. Fulkerson DH, Satyan KB, Wilder LM, Riviello JJ, Stayer SA, Whitehead WE, Curry DJ, Dauser RC, Luerssen TG, Jea A. Intraoperative monitoring of motor evoked potentials in very young children. J Neurosurg Pediatr. 2011;7:331–7.

    PubMed  Google Scholar 

  71. Calderón P, Deltenre P, Stany I, Kaleeta Maalu JP, Stevens M, Lamoureux J, Bellemans M, Dujardin S, Van der Linden P, Dachy B. Clonidine administration during intraoperative monitoring for pediatric scoliosis surgery: effects on central and peripheral motor responses. Neurophysiol Clin. 2018;48:93–102.

    PubMed  Google Scholar 

  72. Sloan T. Anesthesia and intraoperative neurophysiological monitoring in children. Childs Nerv Syst. 2010;26:227–35.

    PubMed  Google Scholar 

  73. Holdefer RN, Anderson C, Furman M, Sangare Y, Slimp JC. A comparison of the effects of desflurane versus propofol on transcranial motor-evoked potentials in pediatric patients. Childs Nerv Syst. 2014;30:2103–8.

    PubMed  Google Scholar 

  74. Allegaert K, Peeters MY, Verbesselt R, Tibboel D, Naulaers G, de Hoon JN, Knibbe CA. Inter-individual variability in propofol pharmacokinetics in preterm and term neonates. Br J Anaesth. 2007;99:864–70.

    CAS  PubMed  Google Scholar 

  75. Steur RJ, Perez RS, De Lange JJ. Dosage scheme for propofol in children under 3 years of age. Paediatr Anaesth. 2004;14:462–7.

    CAS  PubMed  Google Scholar 

  76. Yang J, Huang Z, Shu H, Chen Y, Sun X, Liu W, Dou Y, Xie C, Lin X, Hu Y. Improving successful rate of transcranial electrical motor-evoked potentials monitoring during spinal surgery in young children. Eur Spine J. 2012;21:980–4.

    PubMed  Google Scholar 

  77. Cheng JS, Ivan ME, Stapleton CJ, Quinones-Hinojosa A, Gupta N, Auguste KI. Intraoperative changes in transcranial motor evoked potentials and somatosensory evoked potentials predicting outcome in children with intramedullary spinal cord tumors. J Neurosurg Pediatr. 2014;13:591–9.

    PubMed  PubMed Central  Google Scholar 

  78. Bray RJ. Propofol infusion syndrome in children. Paediatr Anaesth. 1998;8:491–9.

    CAS  PubMed  Google Scholar 

  79. Fudickar A, Bein B. Propofol infusion syndrome: update of clinical manifestation and pathophysiology. Minerva Anestesiol. 2009;75:339–44.

    CAS  PubMed  Google Scholar 

  80. Sciusco A, Standing JF, Sheng Y, Raimondo P, Cinnella G, Dambrosio M. Effect of age on the performance of bispectral and entropy indices during sevoflurane pediatric anesthesia: a pharmacometric study. Paediatr Anaesth. 2017;27:399–408.

    PubMed  Google Scholar 

  81. Tirel O, Wodey E, Harris R, Bansard JY, Ecoffey C, Senhadji L. Variation of bispectral index under TIVA with propofol in a paediatric population. Br J Anaesth. 2008;100:82–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Jeleazcov C, Schmidt J, Schmitz B, Becke K, Albrecht S. EEG variables as measures of arousal during propofol anaesthesia for general surgery in children: rational selection and age dependence. Br J Anaesth. 2007;99:845–54.

    CAS  PubMed  Google Scholar 

  83. Tirel O, Wodey E, Harris R, Bansard JY, Ecoffey C, Senhadji L. The impact of age on bispectral index values and EEG bispectrum during anaesthesia with desflurane and halothane in children. Br J Anaesth. 2006;96:480–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Litman RS, Cohen DE, Sclabassi RJ, Callahan P, Cladis FP, Motoyama EK. Monitoring. In: Davis PJ, Cladis FP, Motoyama EK, editors. Smith'sanesthesia for infants and children. 8th ed. Philadelphia: Elsevier Mosby; 2011. p. 322–43.

    Google Scholar 

  85. Shinjo T, Hayashi H, Takatani T, Boku E, Nakase H, Kawaguchi M. Intraoperative feasibility of bulbocavernosus reflex monitoring during untethering surgery in infants and children. J Clin Monit Comput. 2019;33(1):155–63.

    PubMed  Google Scholar 

  86. Yuen TG, Agnew WF, Bullara LA, Jacques S, McCreery DB. Histological evaluation of neural damage from electrical stimulation: considerations for the selection of parameters for clinical application. Neurosurgery. 1981;9:292–9.

    CAS  PubMed  Google Scholar 

  87. MacDonald DB. Safety of intraoperative transcranial electrical stimulation motor evoked potential monitoring. J Clin Neurophysiol. 2002;19:416–29.

    Google Scholar 

  88. Ulkatan S, Jaramillo AM, Téllez MJ, Kim J, Deletis V, Seidel K. Incidence of intraoperative seizures during motor evoked potential monitoring in a large cohort of patients undergoing different surgical procedures. J Neurosurg. 2017;126:1296–302.

    PubMed  Google Scholar 

  89. Szelényi A, Kothbauer K, de Camargo AB, Langer D, Flamm ES, Deletis V. Motor evoked potential monitoring during cerebral aneurysm surgery: technical aspects and comparison of transcranial and direct cortical stimulation. Neurosurgery. 2005;57(4 Suppl):331–8.

    PubMed  Google Scholar 

  90. Negus B. Gauze bite block. Anaesth Intensive Care. 1997;25:589.

    CAS  PubMed  Google Scholar 

  91. Duma A, Novak K, Schramm W. Tube-in-tube emergency airway management after a bitten endotracheal tube caused by repetitive transcranial electrical stimulation during spinal cord surgery. Anesthesiology. 2009;11:1155–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Masahiko Kawaguchi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawaguchi, M., Iida, H., Tanaka, S. et al. A practical guide for anesthetic management during intraoperative motor evoked potential monitoring. J Anesth 34, 5–28 (2020). https://doi.org/10.1007/s00540-019-02698-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-019-02698-2

Keywords

Navigation