Skip to main content

Advertisement

Log in

The Japanese Breast Cancer Society clinical practice guidelines for screening and imaging diagnosis of breast cancer, 2015 edition

Breast Cancer Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Breast imaging reporting and data system (BI-RADS) atlas. 5th ed. Reston: American College of Radiology; 2013.

  2. Kanemura S, Tsuji I, Ohuchi N, Takei H, Yokoe T, Koibuchi Y, et al. A case control study on the effectiveness of breast cancer screening by clinical breast examination in Japan. Jpn J Cancer Res. 1999;90(6):607–13.

    Article  CAS  PubMed  Google Scholar 

  3. Screening for breast cancer:U.S. Preventive Services Task Force recommendation statement. Ann Intern Med 2009;151(10):716–726.

  4. Independent UK Panel on Breast Cancer Screening. The benefits and harms of breast cancer screening:an independent review. Lancet. 2012;380(9855):1778–86.

    Article  Google Scholar 

  5. Pisano ED, Gatsonis C, Hendrick E, Yaffe M, Baum JK, Acharyya S, Digital Mammographic Imaging Screening Trial(DMIST)Investigators Group, et al. Diagnostic performance of digital versus film mammography for breast-cancer screening. N Engl J Med. 2005;353(17):1773–83.

    Article  CAS  PubMed  Google Scholar 

  6. Skaane P, Bandos AI, Gullien R, et al. Comparison of digital mammography alone and digital mammography plus tomosynthesis in a population-based screening program. Radiology. 2013;267(1):47–56.

    Article  PubMed  Google Scholar 

  7. Ciatto S, Houssami N, Bernardi D, et al. Integration of 3D digital mammography with tomosynthesis for population breast-cancer screening (STORM). Lancet Oncol. 2013;14(7):583–9.

    Article  PubMed  Google Scholar 

  8. Teh W, Wilson AR. The role of ultrasound in breast cancer screening. A consensus statement by the European Group for Breast Cancer Screening. Eur J Cancer. 1998;34(4):449–50.

    Article  CAS  PubMed  Google Scholar 

  9. Gartlehner G, Thaler K, Chapman A, Kaminski-Hartenthaler A, Berzaczy D, Van Noord MG, et al. Mammography in combination with breast ultrasonography versus mammography for breast cancer screening in women at average risk. Cochrane Database of Syst Rev 2013;(4): CD009632. doi:10.1002/14651858.CD009632.pub2.

  10. Tozaki M, Fukuma E. 1H MR spectroscopy and diffusion weighted imaging of the breast:are they useful tools for characterizing breast lesions before biopsy? AJR Am J Roentgenol. 2009;193(3):840–9.

    Article  PubMed  Google Scholar 

  11. Kojima S, Zhou B, Teramukai S, Hara A, Kosaka N, Matsuo Y, et al. Cancer screening of healthy volunteers using whole-body 18F-FDG-PET scans: the Nishidai clinic study. Eur J Cancer. 2007;43(12):1842–8.

    Article  PubMed  Google Scholar 

  12. Bassett LW, Ysrael M, Gold RH, Ysrael C. Usefulness of mammography and sonography in women less than 35 years of age. Radiology. 1991;180(3):831–5.

    Article  CAS  PubMed  Google Scholar 

  13. Osako T, Iwase T, Takahashi K, Iijima K, Miyagi Y, Nishimura S, et al. Diagnostic mammography and ultrasonography for palpable and nonpalpable breast cancer in women aged 30–39 years. Breast Cancer. 2007;14(3):255–9.

    Article  PubMed  Google Scholar 

  14. Berg WA, Blume JD, Cormack JB, Mendelson EB, Lehrer D, Böhm-Vélez M, ACRIN 6666 Investigators, et al. Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer. JAMA. 2008;299(18):2151–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ishida T, Suzuki A, Kawai M, Narikawa Y, Saito H, Yamamoto S, et al. A randomized controlled trial to verify the efficacy of the use of ultrasonography in breast cancer screening aged 40-49 (J-START): 76 196 women registered. Jpn J Clin Oncol. 2014;44(2):134–40.

    Article  PubMed  Google Scholar 

  16. American College of Radiology. BI-RADS:ultrasound, 2nd ed. In:Breast imaging reporting and data system:BI-RADS atlas, 5th ed. Reston:American College of Radiology; 2013.

  17. Costantini M, Belli P, Lombardi R, Franceschini G, Mulè A, Bonomo L. Characterization of solid breast masses:use of the sonographic breast imaging reporting and data system lexicon. J Ultrasound Med. 2006;25(5):649–59.

    PubMed  Google Scholar 

  18. Hong AS, Rosen EL, Soo MS, Baker JA. BI-RADS for sonography:positive and negative predictive values of sonographic features. AJR. 2005;184(4):1260–5.

    Article  PubMed  Google Scholar 

  19. Abdullah N, Mesurolle B, El-Khoury M, Kao E. Breast imaging reporting and data system lexicon for US:in-terobserver agreement for assessment of breast masses. Radiology. 2009;252(3):665–72.

    Article  PubMed  Google Scholar 

  20. Raza S, Chikarmane SA, Neilsen SS, Zorn LM, Birdwell RL. BI-RADS 3, 4, and 5 lesions: value of US in management—follow-up and outcome. Radiology. 2008;248(3):773–81.

    Article  PubMed  Google Scholar 

  21. Wang LC, Sullivan M, Du H, Feldman MI, Mendelson EB. US appearance of ductal carcinoma in situ. Radiographics. 2013;33(1):213–28.

    Article  PubMed  Google Scholar 

  22. Tozaki M, Fukuma E. Category assessment based on 3D volume data acquired by automated breast ultrasonography. Jpn J Radiol. 2012;30(2):185–91.

    Article  PubMed  Google Scholar 

  23. Ko KH, Hsu HH, Yu JC, Peng YJ, Tung HJ, Chu CM, Chang TH, Chang WC, Wu YC, Lin YP, Hsu GC. Non-mass-like breast lesions at ultrasonography: feature analysis and BI-RADS assessment. Eur J Radiol. 2015;84(1):77–85.

    Article  PubMed  Google Scholar 

  24. Schroeder RJ, Bostanjoglo M, Rademaker J, Maeurer J, Felix R. Role of power Doppler techniques and ultrasound contrast enhancement in the differential diagnosis of focal breast lesions. Eur Radiol. 2003;13(1):68–79.

    PubMed  Google Scholar 

  25. Itoh A, Ueno E, Tohno E, Kamma H, Takahashi H, Shiina T, et al. Breast disease: clinical application of US elastography for diagnosis. Radiology. 2006;239(2):341–50.

    Article  PubMed  Google Scholar 

  26. Cho N, Moon WK, Kim HY, Chang JM, Park SH, Lyou CY. Sonoelastographic strain index for differentiation of benign and malignant nonpalpable breast masses. J Ultrasound Med. 2010;29(1):1–7.

    PubMed  Google Scholar 

  27. Raza S, Odulate A, Ong EM, Chikarmane S, Harston CW. Using real-time tissue elastography for breast lesion evaluation. J Ultrasound Med. 2010;29(4):551–63.

    PubMed  Google Scholar 

  28. Leong LC, Sim LS, Lee YS, Ng FC, Wan CM, Fook-Chong SM, et al. A prospective study to compare the diagnostic performance of breast elastography versus conventional breast ultrasound. Clin Radiol. 2010;65(11):887–94.

    Article  CAS  PubMed  Google Scholar 

  29. Yoon JH, Kim MH, Kim EK, Moon HJ, Kwak JY, Kim MJ. Interobserver variability of ultrasound elastography: how it affects the diagnosis of breast lesions. AJR Am J Roentgenol. 2011;196(3):730–6.

    Article  PubMed  Google Scholar 

  30. Nakashima K, Shiina T, Sakurai M, Enokido K, Endo T, Tsunoda H, Takada E, Umemoto T, Ueno E. JSUM ultrasound elastography practice guideline: breast. J Med Ultrasonics. 2013;40:359–91.

    Article  Google Scholar 

  31. Meng W, Zhang G, Wu C, Wu G, Song Y, Lu Z. Preliminary results of acoustic radiation force impulse (ARFI) ultrasound imaging of breast lesions. Ultrasound Med Biol. 2011;37(9):1436–43.

    Article  PubMed  Google Scholar 

  32. Tozaki M, Isobe S, Sakamoto M. Combination of elastography and tissue quantification using the acoustic radiation force impulse (ARFI) technology for differential diagnosis of breast masses. Jpn J Radiol. 2012;30(8):659–70.

    Article  PubMed  Google Scholar 

  33. Tozaki M, Isobe S, Fukuma E. Preliminary study of ultrasonographic tissue quantification of the breast using the acoustic radiation force impulse (ARFI) technology. Eur J Radiol. 2011;80(2):e182–7.

    Article  PubMed  Google Scholar 

  34. Berg WA, Cosgrove DO, Doré CJ, Schäfer FK, Svensson WE, Hooley RJ, et al. Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses. Radiology. 2012;262(2):435–49.

    Article  PubMed  Google Scholar 

  35. Tozaki M, Saito M, Benson J, Fan L, Isobe S. Shear wave velocity measurements for differential diagnosis of solid breast masses: a comparison between virtual touch quantification and virtual touch IQ. Ultrasound Med Biol. 2013;39(12):2233–45.

    Article  PubMed  Google Scholar 

  36. Mann RM, Kuhl CK, Kinkel K, Boetes C. Breast MRI: guidelines from the European Society of Breast Imaging. Eur Radiol. 2008;18(7):1307–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Turnbull L, Brown S, Harvey I, Olivier C, Drew P, Napp V, et al. Comparative effectiveness of MRI in breast cancer (COMICE) trial: a randomised controlled trial. Lancet. 2010;375(9714):563–71.

    Article  PubMed  Google Scholar 

  38. Jeevan R, Cromwell DA, Trivella M, Lawrence G, Kearins O, Pereira J, et al. Reoperation rates after breast conserving surgery for breast cancer among women in England: retrospective study of hospital episode statistics. BMJ. 2012;345:e4505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Obdeijn IM, Tilanus-Linthorst MM, Spronk S, van Deurzen CH, de Monye C, Hunink MG, et al. Preoperative breast MRI can reduce the rate of tumor-positive resection margins and reoperations in patients undergoing breast-conserving surgery. AJR Am J Roentgenol. 2013;200(2):304–10.

    Article  PubMed  Google Scholar 

  40. Wang SY, Kuntz KM, Tuttle TM, Jacobs DR Jr, Kane RL, Virnig BA. The association of preoperative breast magnetic resonance imaging and multiple breast surgeries among older women with early stage breast cancer. Breast Cancer Res Treat. 2013;138(1):137–47.

    Article  PubMed  Google Scholar 

  41. Akashi-Tanaka S, Sato N, Ohsumi S, Kimijima I, Inaji H, Teramoto S, Akiyama F. Evaluation of the usefulness of breast CT imaging in delineating tumor extent and guiding surgical management: a prospective multi-institutional study. Ann Surg. 2012;256(1):157–62.

    Article  PubMed  Google Scholar 

  42. Uematsu T, Yuen S, Kasami M, Uchida Y. Comparison of magnetic resonance imaging, multidetector row computed tomography, ultrasonography, and mammography for tumor extension of breast cancer. Breast Cancer Res Treat. 2008;112(3):461–74.

    Article  PubMed  Google Scholar 

  43. Shimauchi A, Yamada T, Sato A, Takase K, Usami S, Ishida T, et al. Comparison of MDCT and MRI for evaluating the intraductal component of breast cancer. AJR Am J Roentgenol. 2006;187(2):322–9.

    Article  PubMed  Google Scholar 

  44. American College of Radiology. ACR practice guideline for the performance of contrast-enhanced magnetic resonance imaging (MRI) of the breast. Reston: American College of Radiology; 2014.

    Google Scholar 

  45. Tozaki M, Yamashiro N, Sakamoto M, Sakamoto N, Mizuuchi N, Fukuma E. Magnetic resonance-guided vacuum-assisted breast biopsy: results in 100 Japanese women. Jpn J Radiol. 2010;28(7):527–33.

    Article  PubMed  Google Scholar 

  46. Brennan ME, Houssami N. Evaluation of the evidence on staging imaging for detection of asymptomatic distant metastases in newly diagnosed breast cancer. Breast. 2012;21(2):112–23.

    Article  CAS  PubMed  Google Scholar 

  47. Riegger C, Herrmann J, Nagarajah J, Hecktor J, Kuemmel S, Otterbach F, et al. Whole-body FDG PET/CT is more accurate than conventional imaging for staging primary breast cancer patients. Eur J Nucl Med Mol Imaging. 2012;39(5):852–63.

    Article  CAS  PubMed  Google Scholar 

  48. Koolen BB, Vrancken Peeters MJ, Aukema TS, Vogel WV, Oldenburg HS, van der Hage JA, et al. 18F-FDG PET/CT as a staging procedure in primary stage II and III breast cancer: comparison with conventional imaging techniques. Breast Cancer Res Treat. 2012;131(1):117–26.

    Article  PubMed  Google Scholar 

  49. Alvarez S, Añorbe E, Alcorta P, López F, Alonso I, Cortés J. Role of sonography in the diagnosis of axillary lymph node metastases in breast cancer: a systematic review. AJR Am J Roentgenol. 2006;186(5):1342–8.

    Article  PubMed  Google Scholar 

  50. Esen G, Gurses B, Yilmaz MH, Ilvan S, Ulus S, Celik V, et al. Gray scale and power Doppler US in the preoperative evaluation of axillary metastases in breast cancer patients with no palpable lymph nodes. Eur Radiol. 2005;15(6):1215–23.

    Article  PubMed  Google Scholar 

  51. Quon A, Gambhir SS. FDG-PET and beyond: molecular breast cancer imaging. J Clin Oncol. 2005;23(8):1664–73.

    Article  CAS  PubMed  Google Scholar 

  52. Cooper KL, Harnan S, Meng Y, Ward SE, Fitzgerald P, Papaioannou D, et al. Positron emission tomography (PET) for assessment of axillary lymph node status in early breast cancer: a systematic review and meta-analysis. Eur J Surg Oncol. 2011;37(3):187–98.

    Article  CAS  PubMed  Google Scholar 

  53. von Minckwitz G, Kümmel S, Vogel P, Hanusch C, Eidtmann H, Hilfrich J, German Breast Group, et al. Intensified neoadjuvant chemotherapy in early-responding breast cancer: phase III randomized GeparTrio study. J Natl Cancer Inst. 2008;100(8):552–62.

    Article  Google Scholar 

  54. Siggelkow W, Rath W, Buell U, Zimny M. FDG PET and tumour markers in the diagnosis of recurrent and metastatic breast cancer. Eur J Nucl Med Mol Imaging. 2004;31(Suppl 1):S118–24.

    PubMed  Google Scholar 

  55. Eubank WB, Mankoff D, Bhattacharya M, Gralow J, Linden H, Ellis G, et al. Impact of FDG PET on defining the extent of disease and on the treatment of patients with recurrent or metastatic breast cancer. AJR Am J Roentgenol. 2004;183(2):479–86.

    Article  PubMed  Google Scholar 

  56. Yap CS, Seltzer MA, Schiepers C, Gambhir SS, Rao J, Phelps ME, et al. Impact of whole-body 18F-FDG PET on staging and managing patients with breast cancer: the referring physician’s perspective. J Nucl Med. 2001;42(9):1334–7.

    CAS  PubMed  Google Scholar 

  57. Simmons C, Miller N, Geddie W, Gianfelice D, Oldfield M, Dranitsaris G, et al. Does confirmatory tumor biopsy alter the management of breast cancer patients with distant metastases? Ann Oncol. 2009;20(9):1499–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Thompson AM, Jordan LB, Quinlan P, Anderson E, Skene A, Dewar JA, Breast Recurrence in Tissues Study Group, et al. Prospective comparison of switches in biomarker status between primary and recurrent breast cancer:the breast recurrence in tissues study (BRITS). Breast Cancer Res. 2010;12(6):R92.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Amir E, Miller N, Geddie W, Freedman O, Kassam F, Simmons C, et al. Prospective study evaluating the impact of tissue confirmation of metastatic disease in patients with breast cancer. J Clin Oncol. 2012;30(6):587–92.

    Article  PubMed  Google Scholar 

  60. Houssami N, Macaskill P, Balleine RL, Bilous M, Pegram MD. HER2 discordance between primary breast cancer and its paired metastasis:tumor biology or test artefact? Insights through metaanalysis. Breast Cancer Res Treat. 2011;129(3):659–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuhiro Tozaki.

Ethics declarations

Conflict of interest

Yoshinori Ito received a research funding from Novartis, Chugai, Parexel, Esai, Sanofi, Taiho, EPS, Dai-ichi-sankyo, and Boehringer-ingelheim, and received manuscript fees from Chugai, Esai and Novartis.

Additional information

This article is an English digested edition of the Clinical Practice Guideline of Breast Cancer 2015, published by Kanehara & Co., Ltd. Details of recommendation grades were explained in the previous report(Breast Cancer. 2015;22:1–4).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tozaki, M., Kuroki, Y., Kikuchi, M. et al. The Japanese Breast Cancer Society clinical practice guidelines for screening and imaging diagnosis of breast cancer, 2015 edition. Breast Cancer 23, 357–366 (2016). https://doi.org/10.1007/s12282-016-0674-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-016-0674-7

Keywords

Navigation