Skip to main content

Advertisement

Log in

Medical nutrition therapy and dietary counseling for patients with diabetes-energy, carbohydrates, protein intake and dietary counseling

Diabetology International Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  1. Tokunaga K, Matsuzawa Y, Tarui S, et al. Ideal body weight estimated from the body mass index with the lowest morbidity. Int J Obes. 1991;15:1–5.

    CAS  PubMed  Google Scholar 

  2. The Global BMI Mortality Collaboration. Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies. Lancet. 2016;388:776–86.

    PubMed  PubMed Central  Google Scholar 

  3. Dietary Reference Intakes for Japanese (Version 2020). Ministry of Health, Labor and Welfare; 2020. https://www.mhlw.go.jp/stf/newpage_08517.html. Accessed 24 Mar 2020.

  4. So WY, Yang X, Chan JCN, et al. Risk factors in V-shaped risk associations with all-cause mortality in type 2 diabetes—The Hong Kong Diabetes Registry. Diabetes Metab Res Rev. 2008;24:238–46.

    PubMed  Google Scholar 

  5. Tanaka S, Tanaka S, Sone H, et al. Body mass index and mortality among Japanese patients with type 2 diabetes: Pooled analysis of the Japan Diabetes complications study and the Japanese elderly diabetes intervention trial. J Clin Endocrinol Metab. 2014;99:E2692–E26962696.

    CAS  PubMed  Google Scholar 

  6. Kubota Y, Iso H, Tamakoshi A, for the JACC Study Group. Association of Body Mass Index and Mortality in Japanese Diabetic Men and Women Based on Self-Reports: the Japan Collaborative Cohort (JACC) Study. J Epidemiol. 2015;25:553–8.

    PubMed  Google Scholar 

  7. Omura T, Tamura Y, Araki A, et al. Assessing the association between optimal energy intake and all-cause mortality in older patients with diabetes mellitus using the Japanese Elderly Diabetes Intervention Trial. Geriatr Gerontol Int. 2020;20:59–655.

    PubMed  Google Scholar 

  8. Edqvist J, Rawshani A, Rosengren A, et al. BMI and mortality in patients with new-onset type 2 diabetes: a comparison with age-and sex-matched control subjects from the general population. Diabetes Care. 2018;41:485–93.

    PubMed  Google Scholar 

  9. Padwal R, Leslie WD, Lix LM, et al. Relationship among body fat percentage, body mass index, and all-cause mortality. Ann Intern Med. 2016;164:532–41.

    PubMed  Google Scholar 

  10. Kramer CK, Zinman B, Retnakaran R. Are metabolically healthy overweight and obesity benign conditions? A Systematic review and meta-analysis. Ann Intern Med. 2013;159:758–69.

    PubMed  Google Scholar 

  11. Stefan N, Schick F, Häring HU. Causes, characteristics, and consequences of metabolically unhealthy normal weight in humans. Cell Metab. 2017;26:293–300.

    Google Scholar 

  12. Tuomilehto J, Lindström J, Eriksson JG, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344:1343–50.

    CAS  PubMed  Google Scholar 

  13. Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346:393–403.

    PubMed Central  Google Scholar 

  14. The Look AHEAD Research Group. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med. 2013;369:145–54.

    PubMed Central  Google Scholar 

  15. Franz MJ, Boucher JL, Rutten-Ramos S, et al. Lifestyle weight-loss intervention outcomes in overweight and obese adults with type 2 diabetes: a systematic review and meta-analysis of randomized clinical trials. J Acad Nutr Diet. 2015;115:1447–633.

    PubMed  Google Scholar 

  16. Magkos F, Fraterrigo G, Yoshino J, et al. Effects of moderate and subsequent progressive weight loss on metabolic function and adipose tissue biology in humans with obesity. Cell Metab. 2016;23:591–601.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Evert BE, Dennison M, Yancy WS Jr, et al. Nutrition therapy for adults with diabetes or prediabetes: a consensus report. Diabetes Care. 2019;42:731–54.

    PubMed  PubMed Central  Google Scholar 

  18. Japan Society for the Study of Obesity. Guidelines for the management of obesity disease 2016. Tokyo: Life Science Publication; 2016.

    Google Scholar 

  19. Yoshimura E, Ohkawa K, Katsukawa F, et al. Assessment of energy expenditure using doubly labeled water, physical activity by accelerometer and reported dietary intake in Japanese men with type 2 diabetes: a preliminary study. J Diabetes Investig. 2019;10:318–621.

    CAS  PubMed  Google Scholar 

  20. Morino K, Kondo K, Maegawa H, et al. Total energy expenditure is comparable between patients with and without diabetes mellitus: clinical evaluation of energy requirement in patients with diabetes mellitus (CLEVER-DM) Study. BMJ Open Diabetes Res Care. 2019;7:e000648.

    PubMed  PubMed Central  Google Scholar 

  21. The Japan Diabetes Society. Nihonjin no tounyoubyou no shokuji ryouhou ni kansuru nihon tounyoubyou gakkai no teigen tounyoubyou ni okeru shokuji ryouhou no genjyou to kadai (Proposals by the Japan Diabetes Society on medical nutrition therapy for Japanese patients with diabetes Current status and issues of nutrition therapy for diabetes mellitus). 2013 (in Japanese). https://www.jds.or.jp/modules/important/?page=article&storyid=40. Accessed 24 Mar 2020.

  22. Institute of Medicine. Dietary reference intakes: energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. Washington DC: National Academies Press; 2002.

    Google Scholar 

  23. Sato J, Kanazawa A, Makita S, et al. A randomized controlled trial of 130 g/day low-carbohydrate diet in type 2 diabetes with poor glycemic control. Clin Nutr. 2017;36:992–1000.

    CAS  PubMed  Google Scholar 

  24. American Diabetes Association. 5. Lifestyle management: standards of medical care in diabetes-2019. Diabetes Care. 2019;42(Suppl 1):s46–s60.

    Google Scholar 

  25. Blau JE, Tella SH, Taylor SI, Rother KI. Ketoacidosis associated with SGLT2 inhibitor treatment: analysis of FAERS data. Diabetes Metab Res Rev. 2017. https://doi.org/10.1002/dmrr.2924.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fadini GP, Bonora BM, Avogaro A. SGLT2 inhibitors and diabetic ketoacidosis: data from the FDA adverse event reporting system. Diabetologia. 2017;60:1385–9.

    CAS  PubMed  Google Scholar 

  27. Yamada S, Kabeya Y, Noto H. Dietary approaches for japanese patients with diabetes: a systematic review. Nutrients. 2018;10:1080.

    PubMed Central  Google Scholar 

  28. Yamada Y, Uchida J, Izumi H, et al. A non-calorie-restricted low-carbohydrate diet is effective as an alternative therapy for patients with type 2 diabetes. Intern Med. 2014;53:13–9.

    CAS  PubMed  Google Scholar 

  29. Sato J, Kanazawa A, Hatae C, et al. One year follow-up after a randomized controlled trial of a 130 g/day low-carbohydrate diet in patients with type 2 diabetes mellitus and poor glycemic control. PLoS One. 2017;12:e0188892.

    PubMed  PubMed Central  Google Scholar 

  30. Seidelmann SB, Claggett B, Cheng S, et al. Dietary carbohydrate intake and mortality: a prospective cohort study and meta-analysis. Lancet Public Health. 2018;3:e419–e428428.

    PubMed  PubMed Central  Google Scholar 

  31. Thompson SV, Hannon BA, An R, Holscher HD. Effects of isolated soluble fiber supplementation on body weight, glycemia, and insulinemia in adults with overweight and obesity: a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr. 2017;106:1514–28.

    CAS  PubMed  Google Scholar 

  32. He M, van Dam RM, Rimm E, Hu FB, Qi L. Whole-grain, cereal fiber, bran, and germ intake and the risks of all-cause and cardiovascular disease-specific mortality among women with type 2 diabetes mellitus. Circulation. 2010;121:2162–8.

    PubMed  PubMed Central  Google Scholar 

  33. Burger KN, Beulens JW, van der Schouw YT, et al. Dietary fiber, carbohydrate quality and quantity, and mortality risk of individuals with diabetes mellitus. PLoS One. 2012;7:e43127.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Yao B, Fang H, Xu W, et al. Dietary fiber intake and risk of type 2 diabetes: a dose-response analysis of prospective studies. Eur J Epidemiol. 2014;29:79–88.

    CAS  PubMed  Google Scholar 

  35. Schulze MB, Schulz M, Heidemann C, Schienkiewitz A, Hoffmann K, Boeing H. Fiber and magnesium intake and incidence of type 2 diabetes: a prospective study and meta-analysis. Arch Intern Med. 2007;167:956–65.

    CAS  PubMed  Google Scholar 

  36. Fujii H, Iwase M, Ohkuma T, et al. Impact of dietary fiber intake on glycemic control, cardiovascular risk factors and chronic kidney disease in Japanese patients with type 2 diabetes mellitus: the Fukuoka Diabetes Registry. Nutr J. 2013;12:159.

    PubMed  PubMed Central  Google Scholar 

  37. Post RE, Mainous AG 3rd, King DE, Simpson KN. Dietary fiber for the treatment of type 2 diabetes mellitus: a meta-analysis. J Am Board Fam Med. 2012;25:16–23.

    PubMed  Google Scholar 

  38. Fu S, Li L, Deng S, Zan L, Liu Z. Effectiveness of advanced carbohydrate counting in type 1 diabetes mellitus: a systematic review and meta-analysis. Sci Rep. 2016;6:37067.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. The Japan Diabetes Society. Carbohydrate Counting Education Textbook. Tokyo: Bunkodo; 2017 (in Japanese).

    Google Scholar 

  40. The Japan Diabetes Society. Food exchange lists-dietary guidance for persons with diabetes. 7th ed. Tokyo: Bunkodo; 2015 (in Japanese).

    Google Scholar 

  41. Sheard NF, Clark NG, Brand-Miller JC, et al. Dietary carbohydrate (amount and type) in the prevention and management of diabetes: a statement by the American diabetes association. Diabetes Care. 2004;27:2266–71.

    CAS  PubMed  Google Scholar 

  42. Schwingshackl L, Hoffmann G, Lampousi AM, et al. Food groups and risk of type 2 diabetes mellitus: a systematic review and meta-analysis of prospective studies. Eur J Epidemiol. 2017;32:363–75.

    PubMed  PubMed Central  Google Scholar 

  43. Malik VS, Popkin BM, Bray GA, Despres JP, Willett WC, Hu FB. Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: a meta-analysis. Diabetes Care. 2010;33:2477–83.

    PubMed  PubMed Central  Google Scholar 

  44. Wang M, Yu M, Fang L, Hu RY. Association between sugar-sweetened beverages and type 2 diabetes: a meta-analysis. J Diabetes Investig. 2015;6:360–6.

    CAS  PubMed  Google Scholar 

  45. Malik VS, Hu FB. Fructose and cardiometabolic health: what the evidence from sugar-sweetened beverages Tells Us. J Am Coll Cardiol. 2015;66:1615–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Malik VS. Sugar sweetened beverages and cardiometabolic health. Curr Opin Cardiol. 2017;32:572–9.

    PubMed  Google Scholar 

  47. Imamura F, O’Connor L, Ye Z, et al. Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: systematic review, meta-analysis, and estimation of population attributable fraction. Br J Sports Med. 2016;50:496–504.

    PubMed  Google Scholar 

  48. Greenwood DC, Threapleton DE, Evans CE, et al. Association between sugar-sweetened and artificially sweetened soft drinks and type 2 diabetes: systematic review and dose-response meta-analysis of prospective studies. Br J Nutr. 2014;112:725–34.

    CAS  PubMed  Google Scholar 

  49. Azad MB, Abou-Setta AM, Chauhan BF, et al. Nonnutritive sweeteners and cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials and prospective cohort studies. CMAJ. 2017;189:e929–e939939.

    PubMed  PubMed Central  Google Scholar 

  50. Gardner C, Wylie-Rosett J, Gidding SS, et al. Nonnutritive sweeteners: current use and health perspectives: a scientific statement from the American Heart Association and the American Diabetes Association. Diabetes Care. 2012;35:1798–808.

    PubMed  PubMed Central  Google Scholar 

  51. Johnson RK, Lichtenstein AH, Anderson CAM, et al. Low-calorie sweetened beverages and cardiometabolic health: a science advisory from the American Heart Association. Circulation. 2018;138:e126–e140140.

    PubMed  Google Scholar 

  52. Nichol AD, Holle MJ, An R. Glycemic impact of non-nutritive sweeteners: a systematic review and meta-analysis of randomized controlled trials. Eur J Clin Nutr. 2018;72:796–804.

    CAS  PubMed  Google Scholar 

  53. Evert AB, Dennison M, Gardner CD, et al. Nutrition therapy for adults with diabetes or prediabetes: a consensus report. Diabetes Care. 2019;42:731–54.

    PubMed  PubMed Central  Google Scholar 

  54. Greenwood DC, Threapleton DE, Evans CE, et al. Glycemic index, glycemic load, carbohydrates, and type 2 diabetes: systematic review and dose-response meta-analysis of prospective studies. Diabetes Care. 2013;36:4166–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Bhupathiraju SN, Tobias DK, Malik VS, et al. Glycemic index, glycemic load, and risk of type 2 diabetes: results from 3 large US cohorts and an updated meta-analysis. Am J Clin Nutr. 2014;100:218–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Franz MJ, MacLeod J, Evert A, et al. Academy of nutrition and dietetics nutrition practice guideline for type 1 and type 2 diabetes in adults: systematic review of evidence for medical nutrition therapy effectiveness and recommendations for integration into the nutrition care process. J Acad Nutr Diet. 2017;117:1659–79.

    PubMed  Google Scholar 

  57. Vega-Lopez S, Venn BJ, Slavin JL. Relevance of the glycemic index and glycemic load for body weight, diabetes, and cardiovascular disease. Nutrients. 2018;10:e1361.

    PubMed  Google Scholar 

  58. Pan A, Sun Q, Bernstein AM, et al. Red meat consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. Am J Clin Nutr. 2011;94:1088–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kurotani K, Nanri A, Goto A, et al. Red meat consumption is associated with the risk of type 2 diabetes in men but not in women: a Japan Public Health Center-based Prospective Study. Br J Nutr. 2013;110:1910–8.

    CAS  PubMed  Google Scholar 

  60. Wang ET, de Koning L, Kanaya AM. Higher protein intake is associated with diabetes risk in South Asian Indians: the Metabolic Syndrome and Atherosclerosis in South Asians Living in America (MASALA) study. J Am Coll Nutr. 2010;29:130–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Sluijs I, Beulens JW, van der Dl A, et al. Dietary intake of total, animal, and vegetable protein and risk of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-NL study. Diabetes Care. 2010;33:43–8.

    CAS  PubMed  Google Scholar 

  62. Ericson U, Sonestedt E, Gullberg B, et al. High intakes of protein and processed meat associate with increased incidence of type 2 diabetes. Br J Nutr. 2013;109:1143–53.

    CAS  PubMed  Google Scholar 

  63. Shang X, Scott D, Hodge AM, et al. Dietary protein intake and risk of type 2 diabetes: results from the Melbourne Collaborative Cohort Study and a meta-analysis of prospective studies. Am J Clin Nutr. 2016;104:1352–65.

    CAS  PubMed  Google Scholar 

  64. Ye J, Yu Q, Mai W, et al. Dietary protein intake and subsequent risk of type 2 diabetes: a dose-response meta-analysis of prospective cohort studies. Acta Diabetol. 2019;56:851–70.

    CAS  PubMed  Google Scholar 

  65. Chen Z, Franco OH, Lamballais S, et al. Associations of specific dietary protein with longitudinal insulin resistance, prediabetes and type 2 diabetes: the Rotterdam Study. Clin Nutr. 2019;39:242–9.

    PubMed  Google Scholar 

  66. Sluik D, Brouwer-Brolsma EM, Berendsen AAM, et al. Protein intake and the incidence of pre-diabetes and diabetes in 4 population-based studies: the PREVIEW project. Am J Clin Nutr. 2019;109:1310–8.

    PubMed  PubMed Central  Google Scholar 

  67. Li J, Sun C, Liu S, et al. Dietary protein intake and type 2 diabetes among women and men in Northeast China. Sci Rep. 2016;6:37604.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Konishi K, Wada K, Yamakawa M, et al. Dietary soy intake is inversely associated with risk of type 2 diabetes in Japanese Women but Not in Men. J Nutr. 2019;149:1208–14.

    PubMed  Google Scholar 

  69. Halbesma N, Bakker SJ, Jansen DF, et al. High protein intake associates with cardiovascular events but not with loss of renal function. J Am Soc Nephrol. 2009;20:1797–804.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Bernstein AM, Pan A, Rexrode KM, et al. Dietary protein sources and the risk of stroke in men and women. Stroke. 2012;43:637–44.

    CAS  PubMed  Google Scholar 

  71. Levine ME, Suarez JA, Brandhorst S, et al. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab. 2014;19:407–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Zheng Y, Li Y, Satija A, et al. Association of changes in red meat consumption with total and cause specific mortality among US women and men: two prospective cohort studies. BMJ. 2019;365:l2110.

    PubMed  PubMed Central  Google Scholar 

  73. Virtanen HEK, Voutilainen S, Koskinen TT, et al. Dietary proteins and protein sources and risk of death: the Kuopio Ischaemic Heart Disease Risk Factor Study. Am J Clin Nutr. 2019;109:1462–71.

    PubMed  Google Scholar 

  74. Nagao M, Iso H, Yamagishi K, et al. Meat consumption in relation to mortality from cardiovascular disease among Japanese men and women. Eur J Clin Nutr. 2012;66:687–93.

    CAS  PubMed  Google Scholar 

  75. Budhathoki S, Sawada N, Iwasaki M, et al. Association of animal and plant protein intake with all-cause and cause-specific mortality. JAMA Intern Med. 2019. https://doi.org/10.1001/jamainternmed.2019.2806(Epub ahead of print).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Pedersen AN, Kondrup J, Børsheim E. Health effects of protein intake in healthy adults: a systematic literature review. Food Nutr Res. 2013. https://doi.org/10.3402/fnr.v57i0.21245.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Shukla AP, Andono J, Touhamy SH, et al. Carbohydrate-last meal pattern lowers postprandial glucose and insulin excursions in type 2 diabetes. BMJ Open Diabetes Res Care. 2017;5:e000440.

    PubMed  PubMed Central  Google Scholar 

  78. Kuwata H, Iwasaki M, Shimizu S, et al. Meal sequence and glucose excursion, gastric emptying and incretin secretion in type 2 diabetes: a randomised, controlled crossover, exploratory trial. Diabetologia. 2016;59:453–61.

    CAS  PubMed  Google Scholar 

  79. The Japan Diabetes Society. Japanese Clinical Practice Guideline for Diabetes 2019; 3. Diet Therapy. Diabetol Int. 2020; https://doi.org/10.1007/s13340-020-00439-5.

  80. Brenner BM, Lawler EV, Mackenzie HS. The hyperfiltration theory: a paradigm shift in nephrology. Kidney Int. 1996;49:1774–7.

    CAS  PubMed  Google Scholar 

  81. Levey AS, Greene T, Beck GJ, Caggiula AW, Kusek JW, Hunsicker LG, Klahr S. Dietary protein restriction and the progression of chronic renal disease: what have all of the results of the MDRD study shown? Modification of Diet in Renal Disease Study group. J Am Soc Nephrol. 1999;10:2426–39.

    CAS  PubMed  Google Scholar 

  82. Yan B, Su X, Xu B, Qiao X, Wang L. Effect of diet protein restriction on progression of chronic kidney disease: a systematic review and meta-analysis. PLoS One. 2018;13:e0206134.

    PubMed  PubMed Central  Google Scholar 

  83. Hansen HP, Tauber-Lassen E, Jensen BR, et al. Effect of dietary protein restriction on prognosis in patients with diabetic nephropathy. Kidney Int. 2002;62:220–8.

    PubMed  Google Scholar 

  84. Koya D, Haneda M, Inomata S, et al. Long-term effect of modification of dietary protein intake on the progression of diabetic nephropathy: a randomised controlled trial. Diabetologia. 2009;52:2037–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Narita T, Koshimura J, Meguro H, et al. Determination of optimal protein contents for a protein restriction diet in type 2 diabetic patients with microalbuminuria. Tohoku J Exp Med. 2001;193:45–55.

    CAS  PubMed  Google Scholar 

  86. Dullaart RP, Beusekamp BJ, Meijer S, et al. Long-term effects of protein-restricted diet on albuminuria and renal function in IDDM patients without clinical nephropathy and hypertension. Diabetes Care. 1993;16:483–92.

    CAS  PubMed  Google Scholar 

  87. Pijls LT, de Vries H, Donker AJ, et al. The effect of protein restriction on albuminuria in patients with type 2 diabetes mellitus: a randomized trial. Nephrol Dial Transplant. 1999;14:1445–533.

    CAS  PubMed  Google Scholar 

  88. Meloni C, Tatangelo P, Cipriani S, et al. Adequate protein dietary restriction in diabetic and nondiabetic patients with chronic renal failure. J Ren Nutr. 2004;14:208–13.

    PubMed  Google Scholar 

  89. Raal FJ, Kalk WJ, Lawson M, et al. Effect of moderate dietary protein restriction on the progression of overt diabetic nephropathy: a 6-month prospective study. Am J Clin Nutr. 1994;60:579–85.

    CAS  PubMed  Google Scholar 

  90. Brouhard BH, LaGrone L. Effect of dietary protein restriction on functional renal reserve in diabetic nephropathy. Am J Med. 1990;89:427–31.

    CAS  PubMed  Google Scholar 

  91. Walker JD, Bending JJ, Dodds RA, et al. Restriction of dietary protein and progression of renal failure in diabetic nephropathy. Lancet. 1989;2:1411–5.

    CAS  PubMed  Google Scholar 

  92. Zeller K, Whittaker E, Sullivan L, et al. Effect of restricting dietary protein on the progression of renal failure in patients with insulin-dependent diabetes mellitus. N Engl J Med. 1991;324:78–84.

    CAS  PubMed  Google Scholar 

  93. Velazquez Lopez L, Sil Acosta MJ, Goycochea Robles MV, et al. Effect of protein restriction diet on renal function and metabolic control in patients with type 2 diabetes: a randomized clinical trial. Nutr Hosp. 2008;23:141–7.

    CAS  PubMed  Google Scholar 

  94. Dunkler D, Dehghan M, Teo KK, et al. Diet and kidney disease in high-risk individuals with type 2 diabetes mellitus. JAMA Intern Med. 2013;173:1682–92.

    CAS  PubMed  Google Scholar 

  95. Dussol B, Iovanna C, Raccah D, et al. A randomized trial of low-protein diet in type 1 and in type 2 diabetes mellitus patients with incipient and overt nephropathy. J Ren Nutr. 2005;15:398–406.

    PubMed  Google Scholar 

  96. Nezu U, Kamiyama H, Kondo Y, Sakuma M, Morimoto T, Ueda S. Effect of low-protein diet on kidney function in diabetic nephropathy: meta-analysis of randomised controlled trials. BMJ Open. 2013;3:e002934.

    PubMed  PubMed Central  Google Scholar 

  97. Pan Y, Guo LL, Jin HM. Low-protein diet for diabetic nephropathy: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2008;88:660–6.

    CAS  PubMed  Google Scholar 

  98. Robertson LM, Waugh N, Robertson A. Protein restriction for diabetic renal disease. Cochrance Database Syst Rev. 2007;4:002181.

    Google Scholar 

  99. Pedrini MT, Levey AS, Lau J, et al. The effect of dietary protein restriction on the progression of diabetic and nondiabetic renal diseases: a meta-analysis. Ann Intern Med. 1996;124:627–32.

    CAS  PubMed  Google Scholar 

  100. The Japan Diabetes Society. Japanese Clinical Practice Guideline for Diabetes 2019: 9. Diabetic nephropathy. Diabetol Int. 2020; https://doi.org/10.1007/s13340-020-00439-5.

    Book  Google Scholar 

  101. Tauchi E, Hanai K, Babazono T. Effects of dietary protein intake on renal outcome and mortality in patients with advanced diabetic nephropathy. Clin Exp Nephrol. 2020;24:119–25.

    CAS  PubMed  Google Scholar 

  102. Oshima M, Jun M, Ohkuma T, Toyama T, Wada T, Cooper ME, Hadjadj S, Hamet P, Harrap S, Mancia G, Marre M, Williams B, Chalmers J, Woodward M, Perkovic V, ADVANCE Collaborative Group. The relationship between eGFR slope and subsequent risk of vascular outcomes and all-cause mortality in type 2 diabetes: the ADVANCE-ON study. Diabetologia. 2019;62:1988–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Toyama T, Furuichi K, Ninomiya T, Shimizu M, Hara A, Iwata Y, Kaneko S, Wada T. The impacts of albuminuria and low eGFR on the risk of cardiovascular death, all-cause mortality, and renal events in diabetic patients: meta-analysis. PLoS One. 2013;8:e71810.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Li M, Sun F, Piao JH, Yang XG. Protein requirements in healthy adults: a meta-analysis of nitrogen balance studies. Biomed Environ Sci. 2014;27:606–13.

    PubMed  Google Scholar 

  105. Rafii M, Chapman K, Elango R, Campbell WW, Ball RO, Pencharz PB, Courtney-Martin G. Dietary protein requirement of men %3e 65 years old determined by the indicator amino acid oxidation technique is higher than the current estimated average requirement. J Nutr. 2016;146:681–7.

    CAS  Google Scholar 

  106. Tang M, McCabe GP, Elango R, Pencharz PB, Ball RO, Campbell WW. Assessment of protein requirement in octogenarian women with use of the indicator amino acid oxidation technique. Am J Clin Nutr. 2014;99:891–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Stephens TV, Payne M, Ball RO, Pencharz PB, Elango R. Protein requirements of healthy pregnant women during early and late gestation are higher than current recommendations. J Nutr. 2015;145:73–8.

    CAS  PubMed  Google Scholar 

  108. Rafii M, Chapman K, Owens J, Elango R, Campbell WW, Ball RO, Pencharz PB, Courtney-Martin G. Dietary protein requirement of female adults %3e 65 years determined by the indicator amino acid oxidation technique is higher than current recommendations. J Nutr. 2015;145:18–24.

    CAS  PubMed  Google Scholar 

  109. Humayun MA, Elango R, Ball RO, Pencharz PB. Reevaluation of the protein requirement in young men with the indicator amino acid oxidation technique. Am J Clin Nutr. 2007;86:995–1002.

    CAS  PubMed  Google Scholar 

  110. Li M, Wang ZL, Gou LY, Li WD, Tian Y, Hu YC, Wang R, Piao JH, Yang XG, Zhang YH. Evaluation of the protein requirement in Chinese young adults using the indicator amino acid oxidation technique. Biomed Environ Sci. 2013;26:655–62.

    CAS  PubMed  Google Scholar 

  111. Tian Y, Liu J, Zhang Y, Piao J, Gou L, Tian Y, Li M, Ji Y, Yang X. Examination of Chinese habitual dietary protein requirements of Chinese young female adults by indicator amino acid method. Asia Pac J Clin Nutr. 2011;20:390–6.

    CAS  PubMed  Google Scholar 

  112. Menon V, Kopple JD, Wang X, Beck GJ, Collins AJ, Kusek JW, Greene T, Levey AS, Sarnak MJ. Effect of a very low-protein diet on outcomes: long-term follow-up of the modification of diet in renal disease (MDRD) Study. Am J Kidney Dis. 2009;53:208–17.

    CAS  PubMed  Google Scholar 

  113. Kopple JD. National kidney foundation K/DOQI clinical practice guidelines for nutrition in chronic renal failure. Am J Kidney Dis. 2001;37(1 Suppl 2):S66–70.

    CAS  PubMed  Google Scholar 

  114. Uauy R, Scrimshaw NS, Young VR. Human protein requirements: nitrogen balance response to graded levels of egg protein in elderly men and women. Am J Clin Nutr. 1978;31:779–85.

    CAS  PubMed  Google Scholar 

  115. Campbell WW, Crim MC, Dallal GE, Young VR, Evans WJ. Increased protein requirements in elderly people: new data and retrospective reassessments. Am J Clin Nutr. 1994;60:501–9.

    CAS  PubMed  Google Scholar 

  116. Japanese Society of Nephrology. Dietary recommendations for moderate CKD in the case of complications of sarcopenia and frailty. Jpn J Nephrol. 2019;61:525–56 (in Japanese).

    Google Scholar 

  117. Walrand S, Short KR, Bigelow ML, Sweatt AJ, Hutson SM, Nair KS. Functional impact of high protein intake on healthy elderly people. Am J Physiol Endocrinol Metab. 2008;295:e921–e928928.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Knight EL, Stampfer MJ, Hankinson SE, Spiegelman D, Curhan GC. The impact of protein intake on renal function decline in women with normal renal function or mild renal insufficiency. Ann Intern Med. 2003;138:460–7.

    PubMed  Google Scholar 

  119. Metzger M, Yuan WL, Haymann JP, Flamant M, Houillier P, Thervet E, Boffa JJ, Vrtovsnik F, Froissart M, Bankir L, Fouque D, Stengel B. Association of a low-protein diet with slower progression of CKD. Kidney Int Rep. 2017;3:105–14.

    PubMed  PubMed Central  Google Scholar 

  120. Beasley JM, Katz R, Shlipak M, Rifkin DE, Siscovick D, Kaplan R. Dietary protein intake and change in estimated GFR in the Cardiovascular Health Study. Nutrition. 2014;30:794–9.

    CAS  PubMed  Google Scholar 

  121. Halbesma N, Bakker SJ, Jansen DF, Stolk RP, De Zeeuw D, De Jong PE, Gansevoort RT. High protein intake associates with cardiovascular events but not with loss of renal function. J Am Soc Nephrol. 2009;20:1797–804.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Hernández-Alonso P, Salas-Salvadó J, Ruiz-Canela M, Corella D, Estruch R, Fitó M, Arós F, Gómez-Gracia E, Fiol M, Lapetra J, Basora J, Serra-Majem L, Muñoz MÁ, Buil-Cosiales P, Saiz C, Bulló M. High dietary protein intake is associated with an increased body weight and total death risk. Clin Nutr. 2016;35:496–506.

    PubMed  Google Scholar 

  123. Lew QJ, Jafar TH, Koh HW, Jin A, Chow KY, Yuan JM, Koh WP. Red meat intake and risk of ESRD. J Am Soc Nephrol. 2017;28:304–12.

    PubMed  Google Scholar 

  124. Bach KE, Kelly JT, Palmer SC, Khalesi S, Strippoli GFM, Campbell KL. Healthy dietary patterns and incidence of CKD: a meta-analysis of cohort studies. Clin J Am Soc Nephrol. 2019;14:1441–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Kelly JT, Palmer SC, Wai SN, Ruospo M, Carrero JJ, Campbell KL, Strippoli GF. Healthy dietary patterns and risk of mortality and ESRD in CKD: a meta-analysis of cohort studies. Clin J Am Soc Nephrol. 2017;12:272–9.

    PubMed  Google Scholar 

  126. Kamada C, Yoshimura H, Okumura R. Optimal energy distribution of carbohydrate intake for Japanese elderly patients with type 2 diabetes: the Japanese Elderly Intervention Trial. Geriatr Gerontol Int. 2012;12(Suppl 1):41–9.

    PubMed  Google Scholar 

  127. Ministry of Health, Labor and Welfare: Summary of 2017 national health and nutrition survey results. (in Japanese) https://www.mhlw.go.jp/stf/houdou/0000177189_00001.html. Accessed 24 Mar 2020.

  128. Woo MH, Park S, Woo JT. A comparative study of diet in good and poor glycemic control groups in elderly patients with type 2 diabetes mellitus. Korean Diabetes J. 2010;34:303–11.

    PubMed  PubMed Central  Google Scholar 

  129. Deutz NE, Bauer JM, Barazzoni R, et al. Protein intake and exercise for optimal muscle function with aging: recommendations from the ESPEN Expert Group. Clin Nutr. 2014;33:929–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Pedersen AN, Cederholm T. Health effects of protein intake in healthy elderly populations: a systematic literature review. Food Nutr Res. 2014. https://doi.org/10.3402/fnr.v58.23364.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Houston DK, Nicklas BJ, Ding J, et al. Dietary protein intake is associated with lean mass change in older, community-dwelling adults: the Health, Aging, and Body Composition (Health ABC) Study. Am J Clin Nutr. 2008;87:150–5.

    CAS  PubMed  Google Scholar 

  132. Beasley JM, LaCroix AZ, Neuhouser ML, et al. Protein intake and incident frailty in the Women’s Health Initiative observational study. J Am Geriatr Soc. 2010;58:1063–71.

    PubMed  PubMed Central  Google Scholar 

  133. Miki A, Hashimoto Y, Matsumoto S, et al. Protein intake, especially vegetable protein intake, is associated with higher skeletal muscle mass in elderly patients with type 2 diabetes. J Diabetes Res. 2017;2017:7985728. https://doi.org/10.1155/2017/7985728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kobayashi S, Asakura K, Suga H, et al. High protein intake is associated with low prevalence of frailty among old Japanese women: a multicenter cross-sectional study. Nutr J. 2013;12:164.

    PubMed  PubMed Central  Google Scholar 

  135. Paddon-Jones D, Rasmussen BB, et al. Dietary protein recommendations and the prevention of sarcopenia. Curr Opin Clin Nutr Metab Care. 2009;12:86–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Ishikawa-Takata K, Takimoto H. Current protein and amino acid intakes among Japanese people: analysis of the 2012 National Health and Nutrition Survey. Geriatr Gerontol Int. 2018;18:723–31.

    PubMed  Google Scholar 

  137. Nyamdorj R, Pitkäniemi J, Tuomilehto J, et al. Ethnic comparison of the association of undiagnosed diabetes with obesity. Int J Obes. 2010;34:332–9.

    CAS  Google Scholar 

  138. Nakagawa Y, Ishikawa Y, Watanabe K, et al. Impact of the duration of diabetes and frequency of counseling on the effectiveness of dietitian-led medical nutrition therapy in patients with type 2 diabetes. J Jpn Diabetes Soc. 2014;57:813–9 (in Japanese).

    Google Scholar 

  139. Pastors JG, Warshaw H, Daly A, et al. The evidence for the effectiveness of medical nutrition therapy in diabetes management. Diabetes Care. 2002;25:608–13.

    PubMed  Google Scholar 

  140. Møller G, Andersen HK, Snorgaard O. A systematic review and meta-analysis of nutrition therapy compared with dietary advice in patients with type 2 diabetes. Am J Clin Nutr. 2017;106:1394–400.

    PubMed  Google Scholar 

  141. Huang MC, Hsu CC, Wang HS, et al. Prospective randomized controlled trial to evaluate effectiveness of registered dietitian-led diabetes management on glycemic and diet control in a primary care setting in Taiwan. Diabetes Care. 2010;33:233–9.

    PubMed  Google Scholar 

  142. The 50th Anniversary commemorative issue of the Foundation of the Japan Diabetes Society Editorial Board Edition: Shokuji ryoho. Tounyoubyougaku no hensen o mitsumete: nihon tounyoubyou gakkai 50 nen no rekishi (Changes in Diabetology: 50 years of the Japan Diabetes Society). Dietetic therapy. Tokyo: The Japan Diabetes Society, 2008: 146–156 (in Japanese)

  143. Ikeda K, Eguchi M, Shide K, et al. Development and application of Kyoto University Guide for Nutrition counseling detailing the different stages of change. J Jpn Diabetes Soc. 2010;53:817–20 (in Japanese).

    Google Scholar 

  144. Ministry of Health, Labor and Welfare: The National Health and Nutrition Survey in Japan, 2008. (in Japanese) https://www.mhlw.go.jp/bunya/kenkou/eiyou/h20-houkoku.html. Accessed 24 Mar 2020.

  145. Kagawa Y. Jikan eiyougaku (Chrono-nutrition) Fifth Edition: Tokyo: Kagawa Nutrition University Publishing Division; 2013: 11–35 (in Japanese)

  146. Sekino Y, Kashiwa E, Nakamura T. The influence of eating rhythm on diet-induced thermogenesis in young women. J Jpn Soc Nutr Food Sci. 2010;63:101–6 (in Japanese).

    Google Scholar 

  147. Maury E, Ramsey KM, Bass J. Circadian rhythms and metabolic syndrome: from experimental genetics to human disease. Circ Res. 2010;106:447–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Jakubowicz D, Wainstein J, Ahren B, et al. Fasting until noon triggers increased postprandial hyperglycemia and impaired insulin response after lunch and dinner in individuals with type 2 diabetes: a randomized clinical trial. Diabetes Care. 2015;38:1820–6.

    CAS  PubMed  Google Scholar 

  149. Bi H, Gan Y, Lu Z, et al. Breakfast skipping and the risk of type 2 diabetes: a meta-analysis of observational studies. Public Health Nutr. 2015;18:3013–9.

    PubMed  Google Scholar 

  150. Morse SA, Ciechanowski PS, Katon WJ, et al. Isn’t this just bedtime snacking? The potential adverse effects of night-eating symptoms on treatment adherence and outcomes in patients with diabetes. Diabetes Care. 2006;29:1800–4.

    PubMed  Google Scholar 

  151. Suwazono Y, Dochi M, Nogawa K, et al. A longitudinal study on the effect of shift work on weight gain in male Japanese workers. Obesity. 2018;16:1887–933.

    Google Scholar 

  152. Pan A, Schernhammer ES, Hu FB, et al. Rotating night shift work and risk of type 2 diabetes: two prospective cohort studies in women. PLoS Med. 2011;8:e1001141.

    PubMed  PubMed Central  Google Scholar 

  153. Sano Y, Kudo K, Saito T, et al. (Kanshoku no eiyou, himando, taishibouritsu ni oyobosu eikyou) Impact of snacks on nutrition, degree of obesity, body fat percentage. Jpn J Clin Nutr. 1996;88:649–54 (in Japanese).

    Google Scholar 

  154. Adachi K. Preferable period for handy nutrition guidance for non-insulin dependent diabetes mellitus. Jpn J Nutr. 1998;56:159–70 (in Japanese).

    Google Scholar 

  155. Imai S, Matsuda M, Hasegawa G, et al. A simple meal plan of ‘eating vegetables before carbohydrate’ was more effective for achieving glycemic control than an exchange-based meal plan in Japanese patients with type 2 diabetes. Asia Pac J Clin Nutr. 2011;20:161–8.

    PubMed  Google Scholar 

  156. Angelopoulos T, Kokkinos A, Liaskos C, et al. The effect of slow spaced eating on hunger and satiety in overweight and obese patients with type 2 diabetes mellitus. BMJ Open Diabetes Res Care. 2014;2:e000013.

    PubMed  PubMed Central  Google Scholar 

  157. Ohkuma T, Hirakawa Y, Nakamura U, et al. Association between eating rate and obesity: a systematic review and meta-analysis. Int J Obes (Lond). 2015;39:1589–96.

    CAS  Google Scholar 

  158. Sasaki S, Katagiri A, Tsuji T, et al. Self-reported rate of eating correlates with body mass index in 18-year-old Japanese women. Int J Obes Relat Metab Disord. 2003;27:1405–10.

    CAS  PubMed  Google Scholar 

Download references

Funding

The society received no specific funding for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshimasa Yamauchi.

Ethics declarations

Conflict of interest

Toshimasa Yamauchi received honoraria from Astellas Pharma Inc., AstraZeneca K.K., Ono Pharmaceutical Co., Ltd., Sanofi K. K., Takeda Pharmaceutical Co., Ltd., Daiichi Sankyo Co., Ltd., Novo Nordisk Pharma Ltd., and Novartis Pharma K. K. Author TY received research funding from AstraZeneca K.K., Kowa Company, Ltd., Merck, Daiichi Sankyo Co., Ltd., Sanofi K. K., Boehringer Ingelheim GmbH Japan, and Aero Switch. Author TY received subsidies/donations from Novo Nordisk Pharma Ltd., Ono Pharmaceutical Co., Ltd., Mitsubishi Tanabe Pharma Corporation, Sanofi K.K., Taisho Pharma Co., Ltd., Kissei Pharmaceutical Co., Ltd., Kyowa Kirin Co., Ltd., and Daiichi Sankyo Co., Ltd. Author TY belongs to endowed departments by Takeda Pharmaceutical Co., Ltd., Ono Pharmaceutical Co., Ltd., Novo Nordisk Pharma Ltd., Mitsubishi Tanabe Pharma Corporation, Merck, Boehringer Ingelheim GmbH Japan, Kowa Company, Ltd., and Asahi Mutual Life Insurance Company. Hideki Kamiya received honoraria from Sanofi K. K., Novartis Pharma K. K., Ono Pharmaceutical Co., Ltd., MSD K.K., Eli Lilly Japan K.K., Novo Nordisk Pharma Ltd., Astellas Pharma Inc., Mitsubishi Tanabe Pharma Corporation, Sumitomo Dainippon Pharma Co., Ltd., Takeda Pharmaceutical Co., Ltd. Hirotaka Watada received honoraria from Astellas Pharma Inc., AstraZeneca K.K., Nippon Boehringer Ingelheim Co., Ltd., Sumitomo Dainippon Pharma Co., Ltd., Eli Lilly Japan K.K., MSD K.K., Mitsubishi Tanabe Pharma Corporation, Novo Nordisk Pharma Ltd., Ono Pharmaceutical Co., Ltd., Sanofi K.K., Sanwa Kagaku Kenkyusho Co., Ltd., Kyowa Kirin Co., Ltd., Terumo Corporation, FUJIFILM Pharma, and Takeda Pharmaceutical Co., Ltd. Author HW received research funding from Nippon Boehringer Ingelheim Co., Ltd., Kowa Company, Ltd., Sanofi K.K., Yakult Honsha Co., Ltd., Eli Lilly Japan K.K., Novartis Pharma K. K., and Sanwa Kagaku Kenkyusho Co., Ltd. Author HW received subsidies/donations from Abbott JAPAN Co., Ltd., Astellas Pharma Inc., Nippon Boehringer Ingelheim Co., Ltd., Daiichi Sankyo Co., Ltd., Sumitomo Dainippon Pharma Co., Ltd., Pfizer Japan Inc., Kissei Pharmaceutical Co., Ltd., Kyowa Kirin Co., Ltd., Mitsubishi Tanabe Pharma Corporation, MSD K.K., Novo Nordisk Pharma Ltd., Novartis Pharma K. K., Ono Pharmaceutical Co., Ltd., Sanofi K.K., TEIJIN Ltd., and Taisho Pharma Co., Ltd. Author HW belongs to endowed departments by Nippon Boehringer Ingelheim Co., Ltd., Kowa Company, Ltd., MSD K.K., Mitsubishi Tanabe Pharma Corporation, Ono Pharmaceutical Co., Ltd., Sanwa Kagaku Kenkyusho Co., Ltd., Soiken, and Takeda Pharmaceutical Co., Ltd. Daiji Kawanami received honoraria from Takeda Pharmaceutical Co., Ltd., Sanofi K.K., and Novo Nordisk Pharma K.K. Junko Sato received research funding from Sanofi K.K. Daisuke Koya received honoraria from MSD K.K., Astellas Pharma Inc., AstraZeneca K.K., Ono Pharmaceutical Co., Ltd., Taisho Pharma Co., Ltd., Mitsubishi Tanabe Pharma Corporation, Eli Lilly Japan K.K., Nippon Boehringer Ingelheim Co., Ltd., Novo Nordisk Pharma Ltd., Kyowa Kirin Co., Ltd., Taisho Pharmaceutical Co., Ltd., and Sumitomo Dainippon Pharma Co., Ltd. Author DK received research funding from Mitsubishi Tanabe Pharma Corporation, AstraZeneca K.K., and A2 Healthcare Corporation. Author DK received subsidies/donations from Astellas Pharma Inc., Kyowa Kirin Co., Ltd., Kowa Company, Ltd., Sanofi K.K., Johnson & Johnson K.K., Sumitomo Dainippon Pharma Co., Ltd., Takeda Pharmaceutical Co., Ltd., Japan Tobacco Inc. Novo Nordisk Pharma Ltd., Bayer Yakuhin, and Pfizer Japan Inc. Author DK belongs to endowed departments by Nippon Boehringer Ingelheim Co., Ltd., Mitsubishi Tanabe Pharma Corporation, Ono Pharmaceutical Co., Ltd., Taisho Pharma Co., Ltd., and Kyowa Kirin Co., Ltd. Norio Harada received research funding from Japan Diabetes Foundation. Author NH received subsidies/donations from Mitsubishi Tanabe Pharma Corporation, Ono Pharmaceutical Co., Ltd., Sanofi K.K., and MSD K.K. Erina Joo received research funding from Japan Diabetes Foundation. Ryo Suzuki received honoraria from MSD K.K., Novartis Pharma K. K., Takeda Pharmaceutical Co., Ltd., Mitsubishi Tanabe Pharma Corporation, Nippon Boehringer Ingelheim Co., Ltd., Sanofi K.K., Novo Nordisk Pharma K.K., and Astellas Pharma Inc. Kazunori Utsunomiya, Munehiro Kitada, Kenichiro Shide, Ryotaro Bouchi, Yasuharu Ohta and Tatsuya Kondo declare that they have no conflict of interest. Organizational Conflict of Interest: Co-sponsored seminar: Abbott Diagnostics Medical, Abbott Japan, Abbott Vascular Japan, Aegerion Pharmaceuticals, Ajinomoto, AR Brown, Arkray, Arkray Global Business, Asahi Kasei Pharma, ASKA Pharmaceutical, Astellas Pharma, AstraZeneca, Bayer Yakuhin, Cosmic Corporation, Covidien Japan, Daiichi Sankyo, Eiken Chemical, Eizai, Eli Lilly Japan, Fujifilm Pharma, Fujifilm Toyama Chemical, Fukuda Colin, Fukuda Denshi, Gilead Sciences, Hakubaku, Healthy Network, Hitachi Chemical Diagnostics Systems, Horiba, InBody Japan, Johnson & Johnson, Kaken Pharmaceutical, Kissei Pharmaceutical, Kotobuki Pharmaceutical, Kowa, Kracie Pharmaceutical, Kyowa Kirin, LifeScan Japan, LSI Medience, Medtronic Japan, Mitsubishi Tanabe Pharma, Mochida Pharmaceutical, MSD, Mylan EPD, Nikkiso, Nippon Becton Dickinson, Nippon Boehringer Ingelheim, Nipro, Novartis Pharma, Novo Nordisk Pharma, Ono Pharmaceutical, Otsuka Pharmaceutical, Rizap Group, Roche DC Japan, Sanofi, Santen Pharmaceutical, Sanwa Kagaku Kenkyusho, SRL, Sumitomo Dainippon Pharma, Taisho Pharma, Taisho Pharmaceutical, Takeda Pharmaceutical, Terumo, Unex, Welby. Supporting member: Abbott Japan, Arkray Global Business, Astellas Pharma, AstraZeneca, Bunkodo, Chugai Pharmaceutical, Daiichi Sankyo, EA Pharma, Eizai, Eli Lilly Japan, H+B Life Science, Horiba, Japan Tobacco, Johnson & Johnson, Kaken Pharmaceutical, Kissei Pharmaceutical, Kowa, Kyowa Kirin, LifeScan Japan, Medtronic Japan, Mitsubishi Tanabe Pharma, MSD, Nippon Boehringer Ingelheim, Nipro, Novo Nordisk Pharma, Ono Pharmaceutical, PHC, Roche DC Japan, Sanofi, Sanwa Kagaku Kenkyusho, Sekisui Medical, Shionogi, SRL, Sumitomo Dainippon Pharma, Sysmex, Taisho Pharma, Taisho Pharmaceutical, Takeda Pharmaceutical, Terumo, Tosoh. Research grant: Abbott Japan, Eli Lilly Japan, MSD, Nippon Boehringer Ingelheim, Novo Nordisk Pharma, Sanofi, Takeda Pharmaceutical. Award system: Eli Lilly Japan, Novo Nordisk Pharma, Sanofi.

Ethical approval

The article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This is the English version of the consensus statement published in 2019 (J. Japan Diab. Soc. 63: 91–109.) by the Consensus Statements Committee of the Japan Diabetes Society.

The Consensus Statements Committee of the Japan Diabetes Society Chairman (Toshimasa Yamauchi), members (Hideki Kamiya, Norio Harada, Ryo Suzuki, Ryotaro Bouchi, Yasuharu Ohta, Tatsuya Kondo).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamauchi, T., Kamiya, H., Utsunomiya, K. et al. Medical nutrition therapy and dietary counseling for patients with diabetes-energy, carbohydrates, protein intake and dietary counseling. Diabetol Int 11, 224–239 (2020). https://doi.org/10.1007/s13340-020-00437-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13340-020-00437-7

Keywords

Navigation