Skip to main content

Advertisement

Log in

Clinical expert consensus document on standards for lower extremity artery disease of imaging modality from the Japan Endovascular Treatment Conference

Cardiovascular Intervention and Therapeutics Aims and scope Submit manuscript

A Correction to this article was published on 11 August 2022

This article has been updated

Abstract

Imaging modalities have developed to provide precise information in the assessment of lower extremity artery disease (LEAD), including both quantitative measurements and morphological assessment. However, a lack of standardization for the evaluation methods introduces inconsistency and potential risk. This consensus document from Japan Endovascular Treatment Conference (JET) summarizes the methods of measurement and assessment of intravascular ultrasound (IVUS), optical frequency domain imaging (OFDI), and angioscopy. We propose standardized approaches for the evaluation of these modalities in endovascular therapy (EVT).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Change history

References

  1. Iida O, Takahara M, Soga Y, et al. Efficacy of intravascular ultrasound in femoropopliteal stenting for peripheral artery disease with TASC II class A to C lesions. J Endovasc Ther. 2014;21:485–92. https://doi.org/10.1583/14-4721R.1.

    Article  PubMed  Google Scholar 

  2. Allan RB, Puckridge PJ, Spark JI, Delaney CL. The impact of intravascular ultrasound on femoropopliteal artery endovascular interventions: a randomized controlled trial. JACC Cardiovasc Intv. 2022;15:536–46.

    Article  Google Scholar 

  3. Iida O, Takahara M, Soga Y, Morozumi T, Watanabe T, Onishi T, et al. Vessel diameter evaluated by intravascular ultrasound versus angiography. J Endovasc Ther. 2021. https://doi.org/10.1177/15266028211047946.

    Article  PubMed  Google Scholar 

  4. Hodgson JM, Reddy KG, Suneja R, Nair RN, Lesnefsky EJ, Sheehan HM. Intracoronary ultrasound imaging: correlation of plaque morphology with angiography, clinical syndrome and procedural results in patients undergoing coronary angioplasty. J Am Coll Cardiol. 1993;21:35–44. https://doi.org/10.1016/0735-1097(93)90714-c.

    Article  CAS  PubMed  Google Scholar 

  5. Saito Y, Kobayashi Y, Fujii K, Sonoda S, Tsujita K, Hibi K, et al. Clinical expert consensus document on intravascular ultrasound from the Japanese Association of Cardiovascular Intervention and Therapeutics (2021). Cardiovasc Interv Ther. 2022;37:40–51. https://doi.org/10.1007/s12928-021-00824-0.

    Article  PubMed  Google Scholar 

  6. Rasheed Q, Dhawale PJ, Anderson J, Hodgson JM. Intracoronary ultrasound-defined plaque composition: computer-aided plaque characterization and correlation with histologic samples obtained during directional coronary atherectomy. Am Heart J. 1995;129:631–7. https://doi.org/10.1016/0002-8703(95)90307-0.

    Article  CAS  PubMed  Google Scholar 

  7. Potkin BN, Bartorelli AL, Gessert JM, Neville RF, Almagor Y, Roberts WC, et al. Coronary artery imaging with intravascular high-frequency ultrasound. Circulation. 1990;81:1575–85. https://doi.org/10.1161/01.cir.81.5.1575.

    Article  CAS  PubMed  Google Scholar 

  8. Mintz GS, Douek P, Pichard AD, Kent KM, Satler LF, Popma JJ, et al. Target lesion calcification in coronary artery disease: an intravascular ultrasound study. J Am Coll Cardiol. 1992;20:1149–55. https://doi.org/10.1016/0735-1097(92)90371-s.

    Article  CAS  PubMed  Google Scholar 

  9. Xu Y, Mintz GS, Tam A, McPherson JA, Iñiguez A, Fajadet J, et al. Prevalence, distribution, predictors, and outcomes of patients with calcified nodules in native coronary arteries: a 3-vessel intravascular ultrasound analysis from Providing Regional Observations to Study Predictors of Events in the Coronary Tree (PROSPECT). Circulation. 2012;126:537–45. https://doi.org/10.1161/CIRCULATIONAHA.111.055004.

    Article  PubMed  Google Scholar 

  10. Kearney P, Erbel R, Rupprecht HJ, Ge J, Koch L, Voigtländer T, et al. Differences in the morphology of unstable and stable coronary lesions and their impact on the mechanisms of angioplasty. An in vivo study with intravascular ultrasound. Eur Heart J. 1996;17:721–30. https://doi.org/10.1093/oxfordjournals.eurheartj.a014939.

    Article  CAS  PubMed  Google Scholar 

  11. Honye J, Mahon DJ, Jain A, White CJ, Ramee SR, Wallis JB, et al. Morphological effects of coronary balloon angioplasty in vivo assessed by intravascular ultrasound imaging. Circulation. 1992;85:1012–25. https://doi.org/10.1161/01.cir.85.3.1012.

    Article  CAS  PubMed  Google Scholar 

  12. Katsuragawa M, Fujiwara H, Miyamae M, Sasayama S. Histologic studies in percutaneous transluminal coronary angioplasty for chronic total occlusion: comparison of tapering and abrupt types of occlusion and short and long occluded segments. J Am Coll Cardiol. 1993;21:604–11. https://doi.org/10.1016/0735-1097(93)90091-E.

    Article  CAS  PubMed  Google Scholar 

  13. Ellis SG, Ajluni S, Arnold AZ, Popma JJ, Bittl JA, Eigler NL, et al. Increased coronary perforation in the new device era. Incidence, classification, management, and outcome. Circulation. 1994;90:2725–30. https://doi.org/10.1161/01.cir.90.6.2725.

    Article  CAS  PubMed  Google Scholar 

  14. Maehara A, Mintz GS, Ahmed JM, Fuchs S, Castagna MT, Pichard AD, et al. An intravascular ultrasound classification of angiographic coronary artery aneurysms. Am J Cardiol. 2001;88:365–70. https://doi.org/10.1016/s0002-9149(01)01680-0.

    Article  CAS  PubMed  Google Scholar 

  15. Maehara A, Mintz GS, Castagna MT, Pichard AD, Satler LF, Waksman R, et al. Intravascular ultrasound assessment of spontaneous coronary artery dissection. Am J Cardiol. 2002;89:466–8. https://doi.org/10.1016/s0002-9149(01)02272-x.

    Article  PubMed  Google Scholar 

  16. Maehara A, Mintz GS, Bui AB, Castagna MT, Walter OR, Pappas C, et al. Incidence, morphology, angiographic findings, and outcomes of intramural hematomas after percutaneous coronary interventions: an intravascular ultrasound study. Circulation. 2002;105:2037–42. https://doi.org/10.1161/01.cir.0000015503.04751.bd.

    Article  PubMed  Google Scholar 

  17. Cheneau E, Leborgne L, Mintz GS, Lablanche JM, van Dijk RB, Franzen D, et al. Predictors of subacute stent thrombosis: results of a systematic intravascular ultrasound study. Circulation. 2003;108:43–7. https://doi.org/10.1161/01.CIR.0000078636.71728.40.

    Article  PubMed  Google Scholar 

  18. Lee CW, Kang SJ, Park DW, Lee SH, Kim YH, Kim JJ, et al. Intravascular ultrasound findings in patients with very late stent thrombosis after either drug-eluting or bare-metal stent implantation. J Am Coll Cardiol. 2010;55:1936–42. https://doi.org/10.1016/j.jacc.2009.10.077.

    Article  PubMed  Google Scholar 

  19. Wijns W, Shite J, Jones MR, Lee SW, Price MJ, Fabbiocchi F, et al. Optical coherence tomography imaging during percutaneous coronary intervention impacts physician decision-making: ILUMIEN I study. Eur Heart J. 2015;36:3346–55. https://doi.org/10.1093/eurheartj/ehv367.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Qiu F, Mintz GS, Witzenbichler B, Metzger DC, Rinaldi MJ, Duffy PL, et al. Prevalence and clinical impact of tissue protrusion after stent implantation: an adapt-des intravascular ultrasound substudy. JACC Cardiovasc Intv. 2016;9:1499–507. https://doi.org/10.1016/j.jcin.2016.05.043.

    Article  Google Scholar 

  21. Soeda T, Uemura S, Park SJ, Jang Y, Lee S, Cho JM, et al. Incidence and clinical significance of poststent optical coherence tomography findings: one-year follow-up study from a multicenter registry. Circulation. 2015;132:1020–9. https://doi.org/10.1161/CIRCULATIONAHA.114.014704.

    Article  PubMed  Google Scholar 

  22. Miki K, Fujii K, Fukunaga M, Kawasaki D, Shibuya M, Imanaka T, et al. Impact of post-procedural intravascular ultrasound findings on long-term results following self-expanding nitinol stenting in superficial femoral artery lesions. Circ J. 2013;77:1543–50. https://doi.org/10.1253/circj.cj-12-1182.

    Article  PubMed  Google Scholar 

  23. Kubo T, Shinke T, Okamura T, Hibi K, Nakazawa G, Morino Y, et al. Optical frequency domain imaging vs. intravascular ultrasound in percutaneous coronary intervention (OPINION trial): one-year angiographic and clinical results. Eur Heart J. 2017;38:3139–47.

    Article  Google Scholar 

  24. Otake H, Kubo T, Takahashi H, Shinke T, Okamura T, Hibi K, et al. Optical frequency domain imaging versus intravascular ultrasound in percutaneous coronary intervention (OPINION Trial): results from the OPINION imaging study. JACC Cardiovasc Imaging. 2018;11:111–23.

    Article  Google Scholar 

  25. Fujii K, Kubo T, Otake H, Nakazawa G, Sonoda S, Hibi K, et al. Expert consensus statement for quantitative measurement and morphological assessment of optical coherence tomography: update 2022. Cardiovasc Interv Ther. 2022;37:248–54. https://doi.org/10.1007/s12928-022-00845-3.

    Article  PubMed  Google Scholar 

  26. Kawamori H, Konishi A, Shinke T, Akahori H, Ishihara M, Tsujita H, et al. Efficacy of optical frequency domain imaging in detecting peripheral artery disease: the result of a multi-center, open-label, single-arm study. Heart Vessels. 2021;36:818–26. https://doi.org/10.1007/s00380-020-01758-y.

    Article  PubMed  Google Scholar 

  27. Räber L, Mintz GS, Koskinas KC, Johnson TW, Holm NR, Onuma Y, et al. Clinical use of intracoronary imaging. Part 1: guidance and optimization of coronary interventions. An expert consensus document of the European Association of Percutaneous Cardiovascular. Eur Heart J. 2018;39:3281–300. https://doi.org/10.1093/eurheartj/ehy285.

    Article  PubMed  Google Scholar 

  28. Tearney GJ, Regar E, Akasaka T, Adriaenssens T, Barlis P, Bezerra HG, et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J Am Coll Cardiol. 2012;59:1058–72.

    Article  Google Scholar 

  29. Jinnouchi H, Sato Y, Bhoite RR, Kuntz SH, Sakamoto A, Kutyna M, et al. Intravascular imaging and histological correlates of medial and intimal calcification in peripheral artery disease. EuroIntervention. 2021;17:e688–98.

    Article  Google Scholar 

  30. Kawamori H, Shite J, Shinke T, Otake H, Matsumoto D, Nakagawa M, et al. Natural consequence of post-intervention stent malposition, thrombus, tissue prolapse, and dissection assessed by optical coherence tomography at mid-term follow-up. Eur Heart J Cardiovasc Imaging. 2013; 14:865–75. Gutierrez-Chico JL, Wykrzykowska J, Nuesch E et al. Vascular tissue reaction to acute malposition in human coronary arteries: sequential assessment with optical coherence tomography. Circulation Cardiovasc Interv. 2012; 5:20–29, s1–8.

  31. Kim JS, Afari ME, Ha J, Tellez A, Milewski K, Conditt G, et al. Neointimal patterns obtained by optical coherence tomography correlate with specific histological components and neointimal proliferation in a swine model of restenosis. Eur Heart J Cardiovasc Imaging. 2014;15:292–8.

    Article  Google Scholar 

  32. Xhepa E, Bresha J, Joner M, Hapfelmeier A, Rivero F, Ndrepepa G, et al. Clinical outcomes by optical characteristics of neointima and treatment modality in patients with coronary in-stent restenosis. EuroIntervention. 2021;17:e388–95.

    Article  Google Scholar 

  33. Yano M, Yasumura K, Yasumoto K, Tanaka A, Mori N, Nakamura D, Egami Y, Shutta R, Tanouchi J, Nishino M. Initial result of an angioscopy-guided wire crossing technique under continuous saline infusion for chronic total occlusion in femoropopliteal disease. EuroIntervention. 2019;14:1416–9.

    Article  Google Scholar 

  34. Ueda Y, Asakura M, Yamaguchi O, Hirayama A, Hori M, Kodama K. The healing process of infarct-related plaques. Insights from 18 months of serial angioscopic follow-up. J Am Coll Cardiol. 2001;38:1916–22.

    Article  CAS  Google Scholar 

  35. den Heijer P, Foley DP, Hillege HL, et al. The ‘Ermenonville’ classification of observations at coronary angioscopy–evaluation of intra- and inter-observer agreement. European Working Group on Coronary Angioscopy. Eur Heart J. 1994;15:815–22.

    Article  Google Scholar 

  36. Tashiro K, Mori H, Tezuka T, Omura A, Wada D, Sone H, et al. Angioscopic findings of stenosis versus occlusion in femoropopliteal artery disease. J Endovasc Ther. 2022. https://doi.org/10.1177/15266028221079759.

    Article  PubMed  Google Scholar 

  37. Ishihara T, Iida O, Awata M, Nanto K, Nanto S, Uematsu M. Angioscopic assessment of early phase arterial repair after paclitaxel-coated nitinol drug-eluting stent implantation in the superficial femoral artery. Circ J. 2013;77:1838–43.

    Article  CAS  Google Scholar 

  38. Awata M, Nanto S, Uematsu M, Morozumi T, Watanabe T, Onishi T, et al. Heterogeneous arterial healing in patients following paclitaxel-eluting stent implantation: comparison with sirolimus-eluting stents. JACC Cardiovasc Intv. 2009;2:453–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiko Fujihara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

From the J. E. T. Imaging consensus (JEIC) development Task Force.

The original online version of this article was revised due to the legend for Fig. 3 was inadvertently omitted and the Fig.3 has been update.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujihara, M., Kurata, N., Yazu, Y. et al. Clinical expert consensus document on standards for lower extremity artery disease of imaging modality from the Japan Endovascular Treatment Conference. Cardiovasc Interv and Ther 37, 597–612 (2022). https://doi.org/10.1007/s12928-022-00875-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12928-022-00875-x

Keywords

Navigation