Skip to main content

Advertisement

Log in

Guidelines for the use of cerebral oximetry by near-infrared spectroscopy in cardiovascular anesthesia: a report by the cerebrospinal Division of the Academic Committee of the Japanese Society of Cardiovascular Anesthesiologists (JSCVA)

Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Cerebral Oximetry by Near-infrared Spectroscopy (NIRS) has been used in cardiovascular anesthesia, but there was no guideline of regional cerebral oxygen saturation measured by cerebral oximetry by NIRS. This guideline provides recommendations applicable to patients at a risk of developing cerebral ischemia in cardiovascular surgery. Guidelines are intended to define practices meeting the needs of patients in most, but not all, circumstances, and should not replace clinical judgment. The Japanese Society of Cardiovascular Anesthesiologists (JSCVA) Task Force on Guidelines make an effort to ensure that the guideline writing committee contains broad views in using cerebral oximetry. Adherence to recommendations could be enhanced by shared decision making between healthcare providers and patients. This guideline was focused on cerebral oximetry of pediatric and adult cardiovascular disease. We hope this guideline would play an important role in using cerebral oximetry by measured NIRS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

ACP:

Antegrade cerebral perfusion

AUC:

Area under the curve

CABG:

Coronary artery bypass grafting

CEA:

Carotid endarterectomy

CHS:

Cerebral hyperperfusion syndrome

DHCA:

Deep hypothermic circulatory arrest

ICG:

Indocyanine green

JSCVA:

Japanese Society of Cardiovascular Anesthesiologists

LED:

Light emitting diode

MBL:

Modified Beer–Lambert

MRI:

Magnetic resonance imaging

NIRS:

Near-infrared spectroscopy

POCD:

Postoperative cognitive dysfunction

RCP:

Retrograde cerebral perfusion

rSO2 :

Regional cerebral oxygen saturation

SCP:

Selective cerebral perfusion

SEP:

Somatosensory evoked potential

SPECT:

Single photon emission computed tomography

SRS:

Spatially resolved spectroscopy

SSEP:

Somatosensory evoked potential

TAVR:

Transcatheter aortic valve replacement

TCD:

Transcranial Doppler

TEVAR:

Thoracic endovascular aortic repair

TOI:

Tissue oxygenation index

TRS:

Time-resolved spectroscopy

References

  1. Mashour GA, Shanks AM, Kheterpal S. Perioperative stroke and associated mortality after noncardiac, nonneurologic surgery. Anesthesiology. 2011;114:1289–96.

    Article  PubMed  Google Scholar 

  2. Hill MD, Brooks W, Mackey A, Clark WM, Meschia JF, Morrish WF, Mohr JP, Rhodes JD, Popma JJ, Lal BK, Longbottom ME, Voeks JH, Howard G, Brott TG, CREST Investigators. Stroke after carotid stenting and endarterectomy in the carotid revascularization endarterectomy versus stenting trial (CREST). Circulation. 2012;126:3054–61.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Heyer EJ, Mergeche JL, Bruce SS, Ward JT, Stern Y, Anastasian ZH, Quest DO, Solomon RA, Todd GJ, Benvenisty AI, McKinsey JF, Nowygrod R, Morrissey NJ, Connolly ES. Statins reduce neurologic injury in asymptomatic carotid endarterectomy patients. Stroke. 2013;44:1150–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Barbetta I, Carmo M, Mercandalli G, Lattuada P, Mazzaccaro D, Settembrini AM, Dallatana R, Settembrini PG. Outcomes of urgent carotid endarterectomy for stable and unstable acute neurologic deficits. J Vasc Surg. 2014;59:440–6.

    Article  PubMed  Google Scholar 

  5. Takase S, Yokoyama H. Future role of CABG surgery in coronary artery heart disease: fighting stroke, less invasiveness, and data disclosure (in Japanese). J Jpn Coron Assoc. 2013;19:301–5.

    Article  Google Scholar 

  6. Tarakji KG, Sabik JF III, Bhudia SK, Batizy LH, Blackstone EH. Temporal onset, risk factors, and outcomes associated with stroke after coronary artery bypass grafting. JAMA. 2011;305:381–90.

    Article  CAS  Google Scholar 

  7. Mérie C, Køber L, Olsen PS, Andersson C, Jensen JS, Torp-Pedersen C. Risk of stroke after coronary artery bypass grafting: effect of age and comorbidities. Stroke. 2012;43:38–43.

    Article  PubMed  Google Scholar 

  8. Shahian DM, O’Brien SM, Filardo G, Ferraris VA, Haan CK, Rich JB, Normand SL, DeLong ER, Shewan CM, Dokholyan RS, Peterson ED, Edwards FH, Anderson RP, Society of Thoracic Surgeons Quality Measurement Task Force. The Society of Thoracic Surgeons 2008 cardiac surgery risk models: part 3–valve plus coronary artery bypass grafting surgery. Ann Thorac Surg. 2009;88:43–62.

    Article  Google Scholar 

  9. O’Brien SM, Shahian DM, Filardo G, Ferraris VA, Haan CK, Rich JB, Normand SL, DeLong ER, Shewan CM, Dokholyan RS, Peterson ED, Edwards FH, Anderson RP. Society of Thoracic Surgeons Quality Measurement Task Force. The Society of Thoracic Surgeons 2008 cardiac surgery risk models: part 2–isolated valve surgery. Ann Thorac Surg. 2009;88:23–42.

    Article  Google Scholar 

  10. Hu Z, Wang Z, Ren Z, Wu H, Zhang M, Zhang H, Hu X. Similar cerebral protective effectiveness of antegrade and retrograde cerebral perfusion combined with deep hypothermia circulatory arrest in aortic arch surgery: a meta-analysis and systematic review of 5060 patients. J Thorac Cardiovasc Surg. 2014;148:544–60.

    Article  PubMed  Google Scholar 

  11. Tokuda Y, Miyata H, Motomura N, Oshima H, Usui A, Takamoto S, Japan Adult Cardiovascular Database Organization. Brain protection during ascending aortic repair for Stanford type A acute aortic dissection surgery. Nationwide analysis in Japan. Circ J. 2014;78:2431–8.

    Article  PubMed  Google Scholar 

  12. Knowles M, Murphy EH, Dimaio JM, Modrall JG, Timaran CH, Jessen ME, Arko FR III. The effects of operative indication and urgency of intervention on patient outcomes after thoracic aortic endografting. J Vasc Surg. 2011;53:926–34.

    Article  PubMed  Google Scholar 

  13. Patterson BO, Holt PJ, Nienaber C, Fairman RM, Heijmen RH, Thompson MM. Management of the left subclavian artery and neurologic complications after thoracic endovascular aortic repair. J Vasc Surg. 2014;60:1491–7.

    Article  PubMed  Google Scholar 

  14. Zahn R, Erbel R, Nienaber CA, Neumann FJ, Nef H, Eggebrecht H, Senges J. Endovascular aortic repair of thoracic aortic disease: early and 1-year results from a German multicenter registry. J Endovasc Ther. 2013;20:265–72.

    Article  PubMed  Google Scholar 

  15. Daneault B, Kirtane AJ, Kodali SK, Williams MR, Genereux P, Reiss GR, Smith CR, Moses JW, Leon MB. Stroke associated with surgical and transcatheter treatment of aortic stenosis: a comprehensive review. J Am Coll Cardiol. 2011;58:2143–50.

    Article  PubMed  Google Scholar 

  16. Roach GW, Kanchuger M, Mangano CM, Newman M, Nussmeier N, Wolman R, Aggarwal A, Marschall K, Graham SH, Ley C. Adverse cerebral outcomes after coronary bypass surgery. Multicenter Study of Perioperative Ischemia Research Group and the Ischemia Research and Education Foundation Investigators. N Engl J Med. 1996;335:1857–63.

    Article  CAS  Google Scholar 

  17. Martin BJ, Buth KJ, Arora RC, Baskett RJ. Delirium: a cause for concern beyond the immediate postoperative period. Ann Thorac Surg. 2012;93:1114–20.

    Article  PubMed  Google Scholar 

  18. Gottesman RF, Grega MA, Bailey MM, Pham LD, Zeger SL, Baumgartner WA, Selnes OA, McKhann GM. Delirium after coronary artery bypass graft surgery and late mortality. Ann Neurol. 2010;67:338–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Saczynski JS, Marcantonio ER, Quach L, Fong TG, Gross A, Inouye SK, Jones RN. Cognitive trajectories after postoperative delirium. N Engl J Med. 2012;367:30–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kazmierski J, Kowman M, Banach M, Fendler W, Okonski P, Banys A, Jaszewski R, Rysz J, Mikhailidis DP, Sobow T, Kloszewska I, IPDACS Study. Incidence and predictors of delirium after cardiac surgery: results from The IPDACS Study. J Psychosom Res. 2010;69:179–85.

    Article  PubMed  Google Scholar 

  21. Rudolph JL, Inouye SK, Jones RN, Yang FM, Fong TG, Levkoff SE, Marcantonio ER. Delirium: an independent predictor of functional decline after cardiac surgery. J Am Geriatr Soc. 2010;58:643–9.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Milstein A, Pollack A, Kleinman G, Barak Y. Confusion/delirium following cataract surgery: an incidence study of 1-year duration. Int Psychogeriatr. 2002;14:301–6.

    Article  PubMed  Google Scholar 

  23. Mann C, Pouzeratte Y, Boccara G, Peccoux C, Vergne C, Brunat G, Domergue J, Millat B, Colson P. Comparison of intravenous or epidural patient-controlled analgesia in the elderly after major abdominal surgery. Anesthesiology. 2000;92:433–41.

    Article  CAS  PubMed  Google Scholar 

  24. Kaneko T, Takahashi S, Naka T, Hirooka Y, Inoue Y, Kaibara N. Postoperative delirium following gastrointestinal surgery in elderly patients. Surg Today. 1997;27:107–11.

    Article  CAS  PubMed  Google Scholar 

  25. Fisher BW, Flowerdew G. A simple model for predicting postoperative delirium in older patients undergoing elective orthopedic surgery. J Am Geriatr Soc. 1995;43:175–8.

    Article  CAS  PubMed  Google Scholar 

  26. Weed HG, Lutman CV, Young DC, Schuller DE. Preoperative identification of patients at risk for delirium after major head and neck cancer surgery. Laryngoscope. 1995;105:1066–8.

    Article  CAS  PubMed  Google Scholar 

  27. Marcantonio ER, Goldman L, Mangione CM, Ludwig LE, Muraca B, Haslauer CM, Donaldson MC, Whittemore AD, Sugarbaker DJ, Poss R, Haas S, Cook EF, Orav EJ, Lee TH. A clinical prediction rule for delirium after elective noncardiac surgery. JAMA. 1994;271:134–9.

    Article  CAS  PubMed  Google Scholar 

  28. Schneider F, Böhner H, Habel U, Salloum JB, Stierstorfer A, Hummel TC, Miller C, Friedrichs R, Müller EE, Sandmann W. Risk factors for postoperative delirium in vascular surgery. Gen Hosp Psychiatry. 2002;24:28–34.

    Article  PubMed  Google Scholar 

  29. Böhner H, Hummel TC, Habel U, Miller C, Reinbott S, Yang Q, Gabriel A, Friedrichs R, Müller EE, Ohmann C, Sandmann W, Schneider F. Predicting delirium after vascular surgery: a model based on pre- and intraoperative data. Ann Surg. 2003;238:149–56.

    PubMed  PubMed Central  Google Scholar 

  30. Benoit AG, Campbell BI, Tanner JR, Staley JD, Wallbridge HR, Biehl DR, Bradley BD, Louridas G, Guzman RP, Fromm RA. Risk factors and prevalence of perioperative cognitive dysfunction in abdominal aneurysm patients. J Vasc Surg. 2005;42:884–90.

    Article  PubMed  Google Scholar 

  31. Johnson T, Monk T, Rasmussen LS, Abildstrom H, Houx P, Korttila K, Kuipers HM, Hanning CD, Siersma VD, Kristensen D, Canet J, Ibañaz MT, Moller JT, ISPOCD2 Investigators. Postoperative cognitive dysfunction in middle-aged patients. Anesthesiology. 2002;96:1351–7.

    Article  PubMed  Google Scholar 

  32. Canet J, Raeder J, Rasmussen LS, Enlund M, Kuipers HM, Hanning CD, Jolles J, Korttila K, Siersma VD, Dodds C, Abildstrom H, Sneyd JR, Vila P, Johnson T, Muñoz Corsini L, Silverstein JH, Nielsen IK, Moller JT, ISPOCD2 investigators. Cognitive dysfunction after minor surgery in the elderly. Acta Anaesthesiol Scand. 2003;47:1204–10.

    Article  CAS  PubMed  Google Scholar 

  33. van Dijk D, Keizer AM, Diephuis JC, Durand C, Vos LJ, Hijman R. Neurocognitive dysfunction after coronary artery bypass surgery: a systematic review. J Thorac Cardiovasc Surg. 2000;120:632–9.

    Article  PubMed  Google Scholar 

  34. Newman MF, Kirchner JL, Phillips-Bute B, Gaver V, Grocott H, Jones RH, Mark DB, Reves JG, Blumenthal JA, Neurological Outcome Research Group and the Cardiothoracic Anesthesiology Research Endeavors Investigators. Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery. N Engl J Med. 2001;344:395–402.

    Article  CAS  PubMed  Google Scholar 

  35. Rasmussen LS, Larsen K, Houx P, Skovgaard LT, Hanning CD, Moller JT, ISPOCD group. The International Study of Postoperative Cognitive Dysfunction. The assessment of postoperative cognitive function. Acta Anaesthesiol Scand. 2001;45:275–89.

    Article  CAS  PubMed  Google Scholar 

  36. Rudolph JL, Schreiber KA, Culley DJ, McGlinchey RE, Crosby G, Levitsky S, Marcantonio ER. Measurement of post-operative cognitive dysfunction after cardiac surgery: a systematic review. Acta Anaesthesiol Scand. 2010;54:663–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bucerius J, Gummert JF, Borger MA, Walther T, Doll N, Onnasch JF, Metz S, Falk V, Mohr FW. Stroke after cardiac surgery: a risk factor analysis of 16,184 consecutive adult patients. Ann Thorac Surg. 2003;75:472–8.

    Article  PubMed  Google Scholar 

  38. Anyanwu AC, Filsoufi F, Salzberg SP, Bronster DJ, Adams DH. Epidemiology of stroke after cardiac surgery in the currentera. J Thorac Cardiovasc Surg. 2007;134:1121–7.

    Article  PubMed  Google Scholar 

  39. Dacey LJ, Likosky DS, Leavitt BJ, Lahey SJ, Quinn RD, Hernandez F Jr, Quinton HB, Desimone JP, Ross CS, O’Connor GT, Northern New England Cardiovascular Disease Study Group. Perioperative stroke and long-term survival after coronary bypass graft surgery. Ann Thorac Surg. 2005;79:532–6.

    Article  PubMed  Google Scholar 

  40. McKhann GM, Grega MA, Borowicz LM Jr, Baumgartner WA, Selnes OA. Stroke and encephalopathy after cardiac surgery: an update. Stroke. 2006;37:562–71.

    Article  PubMed  Google Scholar 

  41. Newman MF, Grocott HP, Mathew JP, White WD, Landolfo K, Reves JG, Laskowitz DT, Mark DB, Blumenthal JA, Neurologic Outcome Research Group and the Cardiothoracic Anesthesia Research Endeavors (CARE) Investigators of the Duke Heart Center. Report of the substudy assessing the impact of neurocognitive function on quality of life 5 years after cardiac surgery. Stroke. 2001;32:2874–81.

    Article  CAS  PubMed  Google Scholar 

  42. Barnett HJ, Taylor DW, Eliasziw M, Fox AJ, Ferguson GG, Haynes RB, Rankin RN, Clagett GP, Hachinski VC, Sackett DL, Thorpe KE, Meldrum HE, Spence JD. Benefit of carotid endarterectomy in patients with symptomatic moderate or severe stenosis. North American Symptomatic Carotid Endarterectomy Trial Collaborators. N Engl J Med. 1998;339:1415–25.

    Article  CAS  PubMed  Google Scholar 

  43. Risk of stroke in the distribution of an asymptomatic carotid artery. The European Carotid Surgery Trialists Collaborative Group. Lancet. 1995;345:209–12.

  44. Randomised trial of endarterectomy for recently symptomatic carotid stenosis: final results of the MRC European Carotid Surgery Trial (ECST). Lancet. 1998;351:1379–87.

  45. Endarterectomy for asymptomatic carotid artery stenosis. Executive Committee for the Asymptomatic Carotid Atherosclerosis Study. JAMA. 1995;273:1421–8.

  46. Hobson RW II, Weiss DG, Fields WS, Goldstone J, Moore WS, Towne JB, Wright CB. Efficacy of carotid endarterectomy for asymptomatic carotid stenosis. The Veterans Affairs Cooperative Study Group. N Engl J Med. 1993;328:221–7.

    Article  PubMed  Google Scholar 

  47. Mayberg MR, Wilson SE, Yatsu F, Weiss DG, Messina L, Hershey LA, Colling C, Eskridge J, Deykin D, Winn HR. Carotid endarterectomy and prevention of cerebral ischemia in symptomatic carotid stenosis. Veterans Affairs Cooperative Studies Program 309 Trialist Group. JAMA. 1991;266:3289–94.

    Article  CAS  PubMed  Google Scholar 

  48. North American Symptomatic Carotid Endarterectomy Trial Collaborators. Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N Engl J Med. 1991;325:445–53.

    Article  Google Scholar 

  49. Rothwell PM, Gibson RJ, Slattery J, Sellar RJ, Warlow CP. Prognostic value and reproducibility of measurements of carotid stenosis. A comparison of three methods on 1001 angiograms. European Carotid Surgery Trialists’ Collaborative Group. Stroke. 1994;25:2440–4.

    Article  CAS  PubMed  Google Scholar 

  50. Japan Stroke Society Committee on the Japanese Guidelines for the Management of Stroke. In. Japanese guidelines for the management of stroke 2015, First Edition. Tokyo: Kyowa Kikaku; 2015 (in Japanese).

    Google Scholar 

  51. Kretz B, Abello N, Bouchot O, Kazandjian C, Beaumont M, Terriat B, Bernard A, Brenot R, Steinmetz E. Risk index for predicting shunt in carotid endarterectomy. Ann Vasc Surg. 2014;28:1204–12.

    Article  PubMed  Google Scholar 

  52. Aburahma AF, Mousa AY, Stone PA. Shunting during carotid endarterectomy. J Vasc Surg. 2011;54:1502–10.

    Article  PubMed  Google Scholar 

  53. Ogasawara K, Sakai N, Kuroiwa T, Hosoda K, Iihara K, Toyoda K, Sakai C, Nagata I, Ogawa A, Japanese Society for Treatment at Neck in Cerebrovascular Disease Study Group. Intracranial hemorrhage associated with cerebral hyperperfusion syndrome following carotid endarterectomy and carotid artery stenting: retrospective review of 4494 patients. J Neurosurg. 2007;107:1130–6.

    Article  PubMed  Google Scholar 

  54. Stecker MM, Cheung AT, Pochettino A, Kent GP, Patterson T, Weiss SJ, Bavaria JE. Deep hypothermic circulatory arrest: I. Effects of cooling on electroencephalogram and evoked potentials. Ann Thorac Surg. 2001;71:14–21.

    Article  CAS  PubMed  Google Scholar 

  55. James ML, Andersen ND, Swaminathan M, Phillips-Bute B, Hanna JM, Smigla GR, Barfield ME, Bhattacharya SD, Williams JB, Gaca JG, Husain AM, Hughes GC. Predictors of electrocerebral inactivity with deep hypothermia. J Thorac Cardiovasc Surg. 2014;147:1002–7.

    Article  PubMed  Google Scholar 

  56. Orihashi K, Sueda T, Okada K, Imai K. Malposition of selective cerebral perfusion catheter is not a rare event. Eur J Cardiothorac Surg. 2005;27:644–8.

    Article  PubMed  Google Scholar 

  57. Safi HJ, Miller CC III, Lee TY, Estrera AL. Repair of ascending and transverse aortic arch. J Thorac Cardiovasc Surg. 2011;142:630–3.

    Article  PubMed  Google Scholar 

  58. Harris DN, Bailey SM, Smith PL, Taylor KM, Oatridge A, Bydder GM. Brain swelling in first hour after coronary artery bypass surgery. Lancet. 1993;342:586–7.

    Article  CAS  PubMed  Google Scholar 

  59. Usui A, Oohara K, Liu TL, Murase M, Tanaka M, Takeuchi E, Abe T. Determination of optimum retrograde cerebral perfusion conditions. J Thorac Cardiovasc Surg. 1994;107:300–8.

    CAS  PubMed  Google Scholar 

  60. Okita Y, Miyata H, Motomura N, Takamoto S, Japan Cardiovascular Surgery Database Organization. A study of brain protection during total arch replacement comparing antegrade cerebral perfusion versus hypothermic circulatory arrest, with or without retrograde cerebral perfusion: analysis based on the Japan Adult Cardiovascular Surgery Database. J Thorac Cardiovasc Surg. 2015;149:65–73.

    Article  Google Scholar 

  61. Committee for Scientific Affairs, The Japanese Association for Thoracic Surgery. Masuda M, Kuwano H, Okumura M, Arai H, Endo S, Doki Y, Kobayashi J, Motomura N, Nishida H, Saiki Y, Tanaka F, Tanemoto K, Toh Y, Yokomise H. Thoracic and cardiovascular surgery in Japan during 2013: Annual report by The Japanese Association for Thoracic Surgery. Gen Thorac Cardiovasc Surg. 2015;63:670–701.

    Google Scholar 

  62. Orihashi K. Cerebral malperfusion in acute aortic dissection. Surg Today. 2016;46:1353–61.

    Article  PubMed  Google Scholar 

  63. Most H, Reinhard B, Gahl B, Englberger L, Kadner A, Weber A, Schmidli J, Carrel TP, Huber C. Is surgery in acute aortic dissection type A still contraindicated in the presence of preoperative neurological symptoms? Eur J Cardiothorac Surg. 2015;48:945–50.

    Article  PubMed  Google Scholar 

  64. Fleck T, Ehrlich M, Czerny M, Wolner E, Grabenwoger M, Grimm M. Intraoperative iatrogenic type A aortic dissection and perioperative outcome. Interact Cardiovasc Thorac Surg. 2006;5:11–4.

    Article  PubMed  Google Scholar 

  65. Ura M, Sakata R, Nakayama Y, Goto T. Ultrasonographic demonstration of manipulation-related aortic injuries after cardiac surgery. J Am Coll Cardiol. 2000;35:1303–10.

    Article  CAS  PubMed  Google Scholar 

  66. Kapetanakis EI, Stamou SC, Dullum MK, Hill PC, Haile E, Boyce SW, Bafi AS, Petro KR, Corso PJ. The impact of aortic manipulation on neurologic outcomes after coronary artery bypass surgery: a risk-adjusted study. Ann Thorac Surg. 2004;78:1564–71.

    Article  PubMed  Google Scholar 

  67. Caplan LR, Hennerici M. Impaired clearance of emboli (washout) is an important link between hypoperfusion, embolism, and ischemic stroke. Arch Neurol. 1998;55:1475–82.

    Article  CAS  PubMed  Google Scholar 

  68. Gottesman RF, Sherman PM, Grega MA, Yousem DM, Borowicz LM Jr, Selnes OA, Baumgartner WA, McKhann GM. Watershed strokes after cardiac surgery: diagnosis, etiology, and outcome. Stroke. 2006;37:2306–11.

    Article  PubMed  Google Scholar 

  69. Gold JP, Charlson ME, Williams-Russo P, Szatrowski TP, Peterson JC, Pirraglia PA, Hartman GS, Yao FS, Hollenberg JP, Barbut D, Hayes JG, Thomas SJ, Purcell MH, Mattis S, Gorkin L, Post M, Krieger KH, Isom OW. Improvement of outcomes after coronary artery bypass. A randomized trial comparing intraoperative high versus low mean arterial pressure. J Thorac Cardiovasc Surg. 1995;110:1302–11.

    Article  CAS  PubMed  Google Scholar 

  70. Hogue CW Jr, Palin CA, Arrowsmith JE. Cardiopulmonary bypass management and neurologic outcomes: an evidence-based appraisal of current practices. Anesth Analg. 2006;103:21–37.

    Article  PubMed  Google Scholar 

  71. Laffey JG, Boylan JF, Cheng DC. The systemic inflammatory response to cardiac surgery: implications for the anesthesiologist. Anesthesiology. 2002;97:215–52.

    Article  CAS  Google Scholar 

  72. Brady K, Joshi B, Zweifel C, Smielewski P, Czosnyka M, Easley RB, Hogue CW Jr. Real-time continuous monitoring of cerebral blood flow autoregulation using near-infrared spectroscopy in patients undergoing cardiopulmonary bypass. Stroke. 2010;41:1951–6.

    Article  PubMed  PubMed Central  Google Scholar 

  73. du Plessis AJ. Mechanisms of brain injury during infant cardiac surgery. Semin Pediatr Neurol. 1999;6:32–47.

    Article  PubMed  Google Scholar 

  74. Strauss AW, Johnson MC. The genetic basis of pediatric cardiovascular disease. Semin Perinatol. 1996;20:564–76.

    Article  CAS  PubMed  Google Scholar 

  75. Andropoulos DB, Hunter JV, Nelson DP, Stayer SA, Stark AR, McKenzie ED, Heinle JS, Graves DE, Fraser CD Jr. Brain-immaturity is associated with brain injury before and after neonatal cardiac surgery with high-flow bypass and cerebral oxygenation monitoring. J Thorac Cardiovasc Surg. 2010;139:543–56.

    Article  PubMed  Google Scholar 

  76. Papile LA, Burstein J, Burstein R, Koffler H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weight less than 1500 gm. J Pediatr. 1978;92:529–34.

    Article  CAS  Google Scholar 

  77. Te Pas AB, van Wezel-Meijler G, Bokenkamp-Gramann R, Walther FJ. Preoperative cranial ultrasound findings in infants with major congenital heart disease. Acta Paediatr. 2005;94:1597–603.

    Article  PubMed  Google Scholar 

  78. Laptook AR, Shankaran S, Ambalavanan N, Carlo WA, McDonald SA, Higgins RD, Das A, The Hyothermia Subcommitte of the NICD Neonatal Research Network. Outcome of term infants using apgar scores at 10 minutes following hypoxic-ischemic encephalopathy. Pediatrics. 2009;124:1619.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Mahle WT, Tavani F, Zimmerman RA, Nicolson SC, Galli KK, Gaynor JW, Clancy RR, Montenegro LM, Spray TL, Chiavacci RM, Wernovsky G, Kurth CD. An MRI study of neurological injury before and after congenital heart surgery. Circulation. 2002;106:1109–14.

    Google Scholar 

  80. McQuillen PS, Barkovich AJ, Hamrick SE, Perez M, Ward P, Glidden DV, Azakie A, Karl T, Miller SP. Temporal and anatomic risk profile of brain injury with neonatal repair of congenital heart defects. Stroke. 2007;38:736–41.

    Article  PubMed  Google Scholar 

  81. Dent CL, Spaeth JP, Jones BV, Schwartz SM, Glauser TA, Hallinan B, Pearl JM, Khoury PR, Kurth CD. Brain magnetic resonance imaging abnormalities after the Norwood procedure using regional cerebral perfusion. J Thorac Cardiovasc Surg. 2006;131:190–7.

    Article  PubMed  Google Scholar 

  82. Andropoulos DB, Diaz LK, Fraser CD Jr, McKenzie ED, Stayer SA. Is bilateral monitoring of cerebral oxygen saturation necessary during neonatal aortic arch reconstruction? Anesth Analg. 2004;98:1267–72.

    Article  PubMed  Google Scholar 

  83. Abdul Aziz KA, Meduoye A. Is pH-stat or alpha-stat the best technique to follow in patients undergoing deep hypothermic circulatory arrest? Interact Cardiovasc Thorac Surg. 2010;10:271–82.

    Article  PubMed  Google Scholar 

  84. Hongo K, Kobayashi S, Okudera H, Hokama M, Nakagawa F. Noninvasive cerebral optical spectroscopy: depth-resolved measurements of cerebral haemodynamics using indocyanine green. Neurol Res. 1995;17:89–93.

    Article  CAS  PubMed  Google Scholar 

  85. Yamashita Y. The measurement principles of time-resolved spectroscopy (in Japanese). In: Okada E, Hoshi Y, Miyai I, Watanabe E, editors. NIRS: its basics and clinical application. Tokyo: Shinkoh Igaku Shuppansha; 2012. pp. 19–22.

    Google Scholar 

  86. Sakatani K. Basic principles (in Japanese). In: Japan Cerebral Metabolism Monitoring Research Group, editor. Near-infrared spectroscopy made easy for clinicians. Tokyo: Shinkoh Igaku Shuppansha; 2002: pp. 1–9.

    Google Scholar 

  87. Phelps HM, Mahle WT, Kim D, Simsic JM, Kirshbom PM, Kanter KR, Maher KO. Postoperative cerebral oxygenation in hypoplastic left heart syndrome after the Norwood procedure. Ann Thorac Surg. 2009;87:1490–4.

    Article  PubMed  Google Scholar 

  88. Shiraishi Y, Yokoyama J, Atsumi K, Satou N, Momose K, Yamaguchi N. Hazard induced by sensor probe of near infrared spectroscopy (Invos 3100A) (in Japanese with English abstract). J Jpn Soc Clin Anesth. 2001;21:430–3.

    Article  Google Scholar 

  89. Kishi K, Kawaguchi M, Yoshitani K, Nagahata T, Furuya H. Influence of patient variables and sensor location on regional cerebral oxygen saturation measured by INVOS 4100 near-infrared spectrophotometers. J Neurosurg Anesthesiol. 2003;15:302–6.

    Article  Google Scholar 

  90. Cho AR, Kwon JY, Kim C, Hong JM, Kang C. Effect of sensor location on regional cerebral oxygen saturation measured by INVOS 5100 in on-pump cardiac surgery. J Anesth. 2017;31:178–84.

    Article  PubMed  Google Scholar 

  91. Yoshitani K, Kawaguchi M, Okuno T, Kanda T, Ohnishi Y, Kuro M, Nishizawa M. Measurements of optical pathlength using phase-resolved spectroscopy in patients undergoing cardiopulmonary bypass. Anesth Analg. 2007;104:341–6.

    Article  PubMed  Google Scholar 

  92. Yoshitani K, Kawaguchi M, Miura N, Okuno T, Kanda T, Ohnishi Y, Kuro M. Effects of hemoglobin concentration, skull thickness, and the area of the cerebrospinal fluid layer on near-infrared spectroscopy measurements. Anesthesiology. 2007;106:458–62.

    Article  Google Scholar 

  93. Davie SN, Grocott HP. Impact of extracranial contamination on regional cerebral oxygen saturation: a comparison of three cerebral oximetry technologies. Anesthesiology. 2012;116:834–40.

    Article  CAS  PubMed  Google Scholar 

  94. Ogoh S, Sato K, Okazaki K, Miyamoto T, Secher F, Sørensen H, Rasmussen P, Secher NH. A decrease in spatially resolved near-infrared spectroscopy-determined frontal lobe tissue oxygenation by phenylephrine reflects reduced skin blood flow. Anesth Analg. 2014;118:823–9.

    Article  CAS  PubMed  Google Scholar 

  95. Kato S, Yoshitani K, Kubota Y, Inatomi Y, Ohnishi Y. Effect of posture and extracranial contamination on results of cerebral oximetry by near-infrared spectroscopy. J Anesth. 2017;31:103–10.

    Article  PubMed  Google Scholar 

  96. Closhen D, Berres M, Werner C, Engelhard K, Schramm P. Influence of beach chair position on cerebral oxygen saturation: a comparison of INVOS and FORE-SIGHT cerebral oximeter. J Neurosurg Anesthesiol. 2013;25:414–9.

    Article  PubMed  Google Scholar 

  97. Lee JR, Lee PB, Do SH, Jeon YT, Lee JM, Hwang JY, Han SH. The effect of gynaecological laparoscopic surgery on cerebral oxygenation. J Int Med Res. 2006;34:531–6.

    Article  CAS  PubMed  Google Scholar 

  98. Park EY, Koo BN, Min KT, Nam SH. The effect of pneumoperitoneum in the steep Trendelenburg position on cerebral oxygenation. Acta Anaesthesiol Scand. 2009;53:895–9.

    Article  CAS  PubMed  Google Scholar 

  99. Kalmar AF, Foubert L, Hendrickx JF, Mottrie A, Absalom A, Mortier EP, Struys MM. Influence of steep Trendelenburg position and CO2 pneumoperitoneum on cardiovascular, cerebrovascular, and respiratory homeostasis during robotic prostatectomy. Br J Anaesth. 2010;104:433–9.

    Article  CAS  PubMed  Google Scholar 

  100. Closhen D, Treiber AH, Berres M, Sebastiani A, Werner C, Engelhard K, Schramm P. Robotic assisted prostatic surgery in the Trendelenburg position does not impair cerebral oxygenation measured using two different monitors: a clinical observational study. Eur J Anaesthesiol. 2014;31:104–9.

    Article  PubMed  Google Scholar 

  101. Nielsen HB. Systematic review of near-infrared spectroscopy determined cerebral oxygenation during non-cardiac surgery. Front Physiol. 2014;5:93.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Kirkpatrick PJ, Lam J, Al-Rawi P, Smielewski P, Czosnyka M. Defining thresholds for critical ischemia by using near-infrared spectroscopy in the adult brain. J Neurosurg. 1998;89:389–94.

    Article  CAS  PubMed  Google Scholar 

  103. Oyama H, Endoh O, Iizuka H, Ikeda S, Inoue S, Nakashima Y, Shibuya S. The effectiveness of regional cerebral oxygen saturation monitoring using near-infrared spectroscopy in carotid endarterectomy. J Clin Neurosci. 2003;10:79–83.

    Article  Google Scholar 

  104. Carlin RE, McGraw DJ, Calimlim JR, Mascia MF. The use of near-infrared cerebral oximetry in awake carotid endarterectomy. J Clin Anesth. 1998;10:109–13.

    Article  CAS  PubMed  Google Scholar 

  105. Beese U, Langer H, Lang W, Dinkel M. Comparison of near-infrared spectroscopy and somatosensory evoked potentials for the detection of cerebral ischemia during carotid endarterectomy. Stroke. 1998;29:2032–7.

    Article  CAS  PubMed  Google Scholar 

  106. Cho H, Nemoto EM, Yonas H, Balzer J, Sclabassi RJ. Cerebral monitoring by means of oximetry and somato sensory evoked potentials during carotid endarterectomy. J Neurosurg. 1998;89:533–8.

    Article  CAS  PubMed  Google Scholar 

  107. Samra SK, Dy EA, Welch K, Dorje P, Zelenock GB, Stanley JC. Evaluation of a cerebral oximeter as a monitor of cerebralischemia during carotid endarterectomy. Anesthesiology. 2000;93:964–70.

    Article  CAS  PubMed  Google Scholar 

  108. Mille T, Tachimiri ME, Klersy C, Ticozzelli G, Bellinzona G, Blangetti I, Pirrelli S, Lovotti M, Odero A. Near infrared spectroscopy monitoring during carotid endarterectomy: which threshold value is critical? Eur J Vasc Endovasc Surg. 2004;27:646–50.

    Article  CAS  PubMed  Google Scholar 

  109. Yamamoto K, Miyata T, Nagawa H. Good correlation between cerebral oxygenation measured using near infrared spectroscopy and stump pressure during carotid clamping. Int Angiol. 2007;26:262–5.

    CAS  PubMed  Google Scholar 

  110. Moritz S, Kasprzak P, Arlt M, Taeger K, Metz C. Accuracy of cerebral monitoring in detecting cerebral ischemia during carotid endarterectomy: a comparison of transcranial Doppler sonography, near-infrared spectroscopy, stump pressure, and somatosensory evoked potentials. Anesthesiology. 2007;107:563–9.

    Article  PubMed  Google Scholar 

  111. Pennekamp CW, Bots ML, Kappelle LJ, Moll FL, de Borst GJ. The value of near-infrared spectroscopy measured cerebraloximetry during carotid endarterectomy in perioperative stroke prevention. A review. Eur J Vasc Endovasc Surg. 2009;38:539–45.

    Article  CAS  PubMed  Google Scholar 

  112. Pennekamp CW, Immink RV, den Ruijter HM, Kappelle LJ, Ferrier CM, Bots ML, Buhre WF, Moll FL, de Borst GJ. Nearinfrared spectroscopy can predict the onset of cerebral hyperperfusion syndrome after carotid endarterectomy. Cerebrovasc Dis. 2012;34:314–21.

    Article  CAS  PubMed  Google Scholar 

  113. Zogogiannis ID, Iatrou CA, Lazarides MK, Vogiatzaki TD, Wachtel MS, Chatzigakis PK, Dimitriou VK. Evaluation of an intraoperative algorithm based on near-infrared refracted spectroscopy monitoring, in the intraoperative decision for shunt placement, in patients undergoing carotid endarterectomy. Middle East J Anaesthesiol. 2011;21:367–73.

    PubMed  Google Scholar 

  114. Ogasawara K, Inoue T, Kobayashi M, Endo H, Fukuda T, Ogawa A. Pretreatment with the free radical scavenger edaravone prevents cerebral hyperperfusion after carotid endarterectomy. Neurosurgery. 2004;55:1060–7.

    Article  PubMed  Google Scholar 

  115. Orihashi K, Sueda T, Okada K, Imai K. Near-infrared spectroscopy for monitoring cerebral ischemia during selective cerebral perfusion. Eur J Cardiothorac Surg. 2004;26:907–11.

    Article  PubMed  Google Scholar 

  116. Olsson C, Thelin S. Regional cerebral saturation monitoring with near-infrared spectroscopy during selective antegradecerebral perfusion: diagnostic performance and relationship to postoperative stroke. J Thorac Cardiovasc Surg. 2006;131:371–9.

    Article  PubMed  Google Scholar 

  117. Fischer GW, Lin HM, Krol M, Galati MF, Di Luozzo G, Griepp RB, Reich DL. Noninvasive cerebral oxygenation may predict outcome in patients undergoing aortic arch surgery. J Thorac Cardiovasc Surg. 2011;141:815–21.

    Article  PubMed  Google Scholar 

  118. Sakaguchi G, Komiya T, Tamura N, Obata S, Masuyama S, Kimura C, Kobayashi T. Cerebral malperfusion in acute type Adissection: direct innominate artery cannulation. J Thorac Cardiovasc Surg. 2005;129:1190–1.

    Article  PubMed  Google Scholar 

  119. Harrer M, Waldenberger PR, Weiss G, Folkmann S, Gorlitzer M, Moidl R, Grabenwoeger M. Aortic arch surgery using bilateral antegrade selective cerebral perfusion in combination with near-infrared spectrpscopy. Eur J Cardiothorac Surg. 2010;38:561–7.

    Article  PubMed  Google Scholar 

  120. Goldman S, Sulter F, Ferdinand F, Trace C. Optimizing intraoperative cerebral oxygen delivery using noninvasive cerebral oximetry decreases the incidence of stroke for cardiac surgical patients. Heart Surg Forum. 2004;7:E376–81.

    Article  PubMed  Google Scholar 

  121. Edmonds HL Jr. Protective effect of neuromonitoring during cardiac surgery. Ann N Y Acad Sci. 2005;1053:12–9.

    Article  PubMed  Google Scholar 

  122. Reents W, Muellges W, Franke D, Babin-Ebell J, Elert O. Cerebral oxygen saturation assessed by near-infrared spectroscopy during coronary artery bypass grafting and early postoperative cognitive function. Ann Thorac Surg. 2002;74:109–14.

    Article  PubMed  Google Scholar 

  123. Yao FS, Tseng CC, Ho CY, Levin SK, Illner P. Cerebral oxygen desaturation is associated with early postoperative neuropsychological dysfunction in patients undergoing cardiac surgery. J Cardiothorac Vasc Anesth. 2004;18:552–8.

    Article  PubMed  Google Scholar 

  124. Hong SW, Shim JK, Choi YS, Kim DH, Chang BC, Kwak YL. Prediction of cognitive dysfunction and patients’ outcome following valvular heart surgery and the role of cerebral oximetry. Eur J Cardiothorac Surg. 2008;33:560–5.

    Article  PubMed  Google Scholar 

  125. Slater JP, Guarino T, Stack J, Vinod K, Bustami RT, Brown JM III, Rodriguez AL, Magovern CJ, Zaubler T, Freundlich K, Parr GV. Cerebral oxygen desaturation predicts cognitive decline and longer hospital stay after cardiac surgery. Ann Thorac Surg. 2009;87:36–44.

    Article  PubMed  Google Scholar 

  126. Schoen J, Husemann L, Tiemeyer C, Lueloh A, Sedemund-Adib B, Berger KU, Hueppe M, Heringlake M. Cognitive function after sevoflurane- vs propofol-based anaesthesia for on-pump cardiac surgery: a randomized controlled trial. Br J Anaesth. 2011;106:840–50.

    Article  CAS  PubMed  Google Scholar 

  127. Fudickar A, Peters S, Stapelfeldt C, Serocki G, Leiendecker J, Meybohm P, Steinfath M, Bein B. Postoperative cognitive deficit after cardiopulmonary bypass with preserved cerebral oxygenation: a prospective observational pilot study. BMC Anesthesiol. 2011;11:7.

    Article  PubMed  PubMed Central  Google Scholar 

  128. de Tournay-Jette E, Dupuis G, Bherer L, Deschamps A, Cartier R, Denault A. The relationship between cerebral oxygen saturation changes and postoperative cognitive dysfunction in elderly patients after coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth. 2011;25:95–104.

    Article  PubMed  Google Scholar 

  129. Schoen J, Meyerrose J, Paarmann H, Heringlake M, Hueppe M, Berger KU. Preoperative regional cerebral oxygen saturation is a predictor of postoperative delirium in on-pump cardiac surgery patients: a prospective observational trial. CritCare. 2011;15:R218.

    Google Scholar 

  130. Palmbergen WA, van Sonderen A, Keyhan-Falsafi AM, Keunen RW, Wolterbeek R. Improved perioperative neurological monitoring of coronary artery bypass graft patients reduces the incidence of postoperative delirium: the Haga Brain CareStrategy. Interact Cardiovasc Thorac Surg. 2012;15:671–7.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Mohandas BS, Jagadeesh AM, Vikram SB. Impact of monitoring cerebral oxygen saturation on the outcome of patients undergoing open heart surgery. Ann Card Anaesth. 2013;16:102–6.

    Article  CAS  PubMed  Google Scholar 

  132. Murkin JM, Adams SJ, Novick RJ, Quantz M, Bainbridge D, Iglesias I, Cleland A, Schaefer B, Irwin B, Fox S. Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study. Anesth Analg. 2007;104:51–8.

    Article  PubMed  Google Scholar 

  133. Denault A, Deschamps A, Murkin JM. A proposed algorithm for the intraoperative use of cerebral near-infrared spectroscopy. Semin Cardiothorac Vasc Anesth. 2007;11:274–81.

    Article  PubMed  Google Scholar 

  134. Joshi B, Ono M, Brown C, Brady K, Easley RB, Yenokyan G, Gottesman RF, Hogue CW. Predicting the limits of cerebralautoregulation during cardiopulmonary bypass. Anesth Analg. 2012;114:503–10.

    Article  PubMed  Google Scholar 

  135. Fenton KN, Lessman K, Glogowski K, Fogg S, Duncan KF. Cerebral oxygen saturation does not normalize until after stage 2 single ventricle palliation. Ann Thorac Surg. 2007;83:1431–6.

    Article  PubMed  Google Scholar 

  136. Kussman BD, Wypij D, DiNardo JA, Newburger JW, Mayer JE Jr, del Nido PJ, Bacha EA, Pigula F, McGrath E, Laussen PC. Cerebral oximetry during infant cardiac surgery: evaluation and relationship to early postoperative outcome. Anesth Analg. 2009;108:1122–31.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Kurth CD, Steven JM, Nicolson SC. Cerebral oxygenation during pediatric cardiac surgery using deep hypothermic circulatory arrest. Anesthesiology. 1995;82:74–82.

    Article  CAS  PubMed  Google Scholar 

  138. Austin EH III, Edmonds HL Jr, Auden SM, Seremet V, Niznik G, Sehic A, Sowell MK, Cheppo CD, Corlett KM. Benefit of neurophysiologic monitoring for pediatric cardiac surgery. J Thorac Cardiovasc Surg. 1997;114:707–17.

    Article  PubMed  Google Scholar 

  139. Kawaguchi M, Yoshitani K, Ishida K, Yokota M, Uezono S, Nomura M. Survey on perioperative use of cerebral near-infrared spectroscopy monitoring in Japan (in Japanese with English abstract). J Jpn Soc Clin Anesth. 2015;35:651–59.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Yoshitani.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshitani, K., Kawaguchi, M., Ishida, K. et al. Guidelines for the use of cerebral oximetry by near-infrared spectroscopy in cardiovascular anesthesia: a report by the cerebrospinal Division of the Academic Committee of the Japanese Society of Cardiovascular Anesthesiologists (JSCVA). J Anesth 33, 167–196 (2019). https://doi.org/10.1007/s00540-019-02610-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-019-02610-y

Keywords

Navigation