Skip to main content

Advertisement

Log in

Evidence-based Practice Guideline for the Treatment of CKD

Clinical and Experimental Nephrology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

Chapter 1: Diagnosis of CKD References

  1. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, et al. Collaboraters developing the Japanese equation for estimated GFR. Am J Kidney Dis. 2009;53(6):982–92.

    Article  PubMed  CAS  Google Scholar 

  2. Suzuki D, Takano H, Toyoda M, Umezono T, Uehara G, Sakai T, et al. Evaluation of renal biopsy samples of patients with diabetic nephropathy. Intern Med. 2001;40:1077–84.

    Article  PubMed  CAS  Google Scholar 

Referred guidelines and others

  • a. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease:Evaluation, classification, and stratification. Am J Kidney Dis 2002;39(2 Suppl 1):S1–266.

    Google Scholar 

  • b. Japanese Society of Nephrology. Clinical Practice Guidebook for Diagnosis and Treatment of Chronic Kidney Disease. Nippon Jinzo Gakkai Shi. 2007;49:755–870.

  • c. De Jong PE, Curhan GC. Screening, monitoring, and treatment of albuminuria:public health perspectives. J Am Soc Nephrol. 2006;17:2120–6.

    Article  PubMed  Google Scholar 

  • d. Japanese diabetic society, Japanese society of nephrology, Diabetic nephropathy committee. Revised criteria for the early diagnosis of diabetic nephropathy. J Japan Diab Soc. 2005;48:757–9.

    Google Scholar 

  • e. Japanese Societies of Urology, Nephrology, Pediatric Nephrology, Clinical Laboratory Medicine, Clinical Health Laboratory Technician (Working Group for Hematuria Diagnosis Guideline). Hematuria Diagnosis Guideline, 2006.

  • f. Working Group for JCCLS Urine Dip Stick. Proposed Guideline by JCCLS: Methods for Urine Dip Stick. J Jpn Soc Norm Clin Exam. 2001;16:33–55.

    Google Scholar 

  • g. JCCLS Working Groups for Normalization of Urinary Test and for Investigation of Urine Dip Stick. Proposed Guideline by JCCS (revised version): Unifying the Urinary Tests for Protein, Glucose and Occult Blood. J Jpn Soc Norm Clin Exam. 2004;19:53–65.

    Google Scholar 

  • h. Aburano Y, Ito K. Current status and problems of urinary sediment test in Japan—correlation between red blood cells in urinary sediment and urinary occult blood reaction test. Nephrol Frontier. 2004;3:38–41.

    Google Scholar 

  • i. Birch DF, Fairley KF. Hematuria:glomerular or non-glomerular? Lancet 1979;2:845–6.

    Article  PubMed  CAS  Google Scholar 

  • j. Köhler H, Wandel E, Brunck B. Acanthocyturia—a characteristic marker for glomerular bleeding. Kidney Int. 1991;40:115–20.

    Article  PubMed  Google Scholar 

  • k. Guidebook of the renal biopsy. edited by the Japanese Society of Nephrology, Tokyo Igakusha Co., Ltd., Tokyo, 2004.

  • ℓ. Fuiano G, Mazza G, Comi N, Caqlioti A, DeNicola L, Iodice C, Andreucci M, Andreucci VE. Current indications for renal biopsy: a questionnaire-based survey. Am J Kidney Dis. 2000;35:448–57.

    Article  PubMed  CAS  Google Scholar 

  • m. Evidence-based practice guideline for the treatment of diabetes in Japan, 2nd ed., edited by the Japan Diabetes Society, Nankodo Co., Ltd., Tokyo, 2007.

  • n. American Diabetes Association. Nephropathy in Diabetes. Diabetes Care 2007;27:S79-83.

    Google Scholar 

  • o. National Kidney Foundation. K/DOQI clinical guidelines and clinical practice recommendation for diabetes and chronic kidney disease. Am J Kidney Dis. 2007;49 Suppl 2.

  • z. Yanagawa M. Evaluation of GFR using radioisotopes. In: Guidelines for determination of GFR and urinary protein, edited by Japanese Society of Nephrology, Tokyo Igakusha, Tokyo; 2003. p. 66–70

Chapter 2: Significance of CKD References

  1. Drey N, Roderick P, Mullee M, Rogerson M. A population-based study of the incidence and outcomes of diagnosed chronic kidney disease. Am J Kidney Dis. 2003;42:677–84.

    Article  PubMed  Google Scholar 

  2. Kovesdy CP, Trivedi BK, Anderson JE. Association of kidney function with mortality in patients with chronic kidney disease not yet on dialysis:a historical prospective cohort study. Adv Chronic Kidney Dis. 2006;13:183–8.

    Article  PubMed  Google Scholar 

  3. Keith DS, Nichols GA, Gullion CM, Brown JB, Smith DH. Longitudinal follow-up and outcomes among a population with chronic kidney disease in a large managed care organization. Arch Int Med. 2004;164:659–63.

    Article  Google Scholar 

  4. Patel UD, Young EW, Ojo AO, Hayward RA. CKD progression and mortality among older patients with diabetes. Am J Kidney Dis. 2005;46:406–14.

    Article  PubMed  Google Scholar 

  5. Evans M, Fryzek JP, Elinder CG, Cohen SS, McLaughlin JK, Nyrén O, et al. The natural history of chronic renal failure: results from an unselected, population-based, inception cohort in Sweden. Am J Kidney Dis. 2005;46:863–70.

    Article  PubMed  Google Scholar 

  6. Serrano A, Huang J, Ghossein C, Nishi L, Gangavathi A, Madhan V, et al. Stabilization of glomerular filtration rate in advanced chronic kidney disease: a two-year follow-up of a cohort of chronic kidney disease patients stages 4 and 5. Adv Chronic Kidney Dis. 2007;14:105–12.

    Article  PubMed  Google Scholar 

  7. Norris KC, Greene T, Kopple J, Lea J, Lewis J, Lipkowitz M, et al. Baseline predictors of renal disease progression in the African American Study of Hypertension and Kidney Disease. J Am Soc Nephrol. 2006;17:2928–36.

    Article  PubMed  Google Scholar 

  8. Imai E, Horio M, Yamagata K, Iseki K, Hara S, Ura N, et al. Slower decline of glomerular filtration rate in the Japanese general population: a longitudinal 10-year follow-up study. Hypertens Res. 2008;31:433–41.

    Article  PubMed  Google Scholar 

  9. Ishani A, Grandits GA, Grimm RH, Svendsen KH, Collins AJ, Prineas RJ, et al. Association of single measurements of dipstick proteinuria, estimated glomerular filtration rate, and hematocrit with 25-year incidence of end-stage renal disease in the multiple risk factor intervention trial. J Am Soc Nephrol. 2006;17:1444–52.

    Article  PubMed  CAS  Google Scholar 

  10. Iseki K, Ikemiya Y, Iseki C, Takishita S. Proteinuria and the risk of developing end-stage renal disease. Kidney Int. 2003;63:1468–74.

    Article  PubMed  Google Scholar 

  11. Zhang Z, Shahinfar S, Keane WF, Ramjit D, Dickson TZ, Gleim GW, et al. Importance of baseline distribution of proteinuria in renal outcomes trials: lessons from the reduction of endpoints in NIDDM with the angiotensin II antagonist losartan (RENAAL) study. J Am Soc Nephrol. 2005;16:1775–80.

    Article  PubMed  CAS  Google Scholar 

  12. Peterson JC, Adler S, Burkart JM, Greene T, Hebert LA, Hunsicker LG, et al. Blood pressure control, proteinuria, and the progression of renal disease. The Modification of Diet in Renal Disease Study. Ann Int Med. 1995;123:754–62.

    Article  PubMed  CAS  Google Scholar 

  13. Lea J, Greene T, Hebert L, Lipkowitz M, Massry S, Middleton J, et al. The relationship between magnitude of proteinuria reduction and risk of end-stage renal disease: results of the African American study of kidney disease and hypertension. Arch Int Med. 2005;165:947–53.

    Article  Google Scholar 

  14. Halbesma N, Kuiken DS, Brantsma AH, Bakker SJ, Wetzels JF, De Zeeuw D, et al. Macroalbuminuria is a better risk marker than low estimated GFR to identify individuals at risk for accelerated GFR loss in population screening. J Am Soc Nephrol. 2006;17:2582–90.

    Article  PubMed  Google Scholar 

  15. Atkins RC, Briganti EM, Lewis JB, Hunsicker LG, Braden G, Champion de Crespigny PJ, et al. Proteinuria reduction and progression to renal failure in patients with type 2 diabetes mellitus and overt nephropathy. Am J Kidney Dis. 2005;45:281–7.

    Article  PubMed  Google Scholar 

  16. Jafar TH, Stark PC, Schmid CH, Landa M, Maschio G, Marcantoni C, et al. Angiotensin-converting enzymne inhibition and progression of renal disease. proteinuria as a modifiable risk factor for the progression of non-diabetic renal disease. Kidney Int. 2001;60:1131–40.

    Article  PubMed  CAS  Google Scholar 

  17. Kannel WB, Stampfer MJ, Castelli WP, Verter J. The prognostic significance of proteinuria: the Framingham study. Am Heart J. 1984;108:1347–52.

    Article  PubMed  CAS  Google Scholar 

  18. Damsgaard EM, Froland A, Jorgensen OD, Mogensen CE. Microalbuminuria as predictor of increased mortality in elderly people. BMJ. 1990;300:297–300.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002;39:S1–266.

    Google Scholar 

  20. Sarnak MJ, Levey AS, Schoolwerth AC, Coresh J, Culleton B, Hamm LL, et al. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation. 2003;108:2154–269.

    Article  PubMed  Google Scholar 

  21. Ninomiya T, Kiyohara Y, Kubo M, Tanizaki Y, Doi Y, Okubo K, et al. Chronic kidney disease and cardiovascular disease in a general Japanese population: the Hisayama Study. Kidney Int. 2005;68:228–36.

    Article  PubMed  Google Scholar 

  22. Nakayama M, Metoki H, Terawaki H, Ohkubo T, Kikuya M, Sato T, et al. Kidney dysfunction as a risk factor for first symptomatic stroke events in a general Japanese population—the Ohasama study. Nephrol Dial Transplant. 2007;22:1910–5.

    Article  PubMed  Google Scholar 

  23. Anavekar NS, McMurray JJ, Velazquez EJ, Solomon SD, Kober L, Rouleau JL, et al. Relation between renal dysfunction and cardiovascular outcomes after myocardial infarction. N Engl J Med. 2004;351:1285–95.

    Article  PubMed  CAS  Google Scholar 

  24. Kottgen A, Russell SD, Loehr LR, Crainiceanu CM, Rosamond WD, Chang PP, et al. Reduced kidney function as a risk factor for incident heart failure: the atherosclerosis risk in communities (ARIC) study. J Am Soc Nephrol. 2007;18:1307–15.

    Article  PubMed  CAS  Google Scholar 

  25. Brugts JJ, Knetsch AM, Mattace-Raso FU, Hofman A, Witteman JC. Renal function and risk of myocardial infarction in an elderly population: the Rotterdam Study. Arch Int Med. 2005;165:2659–65.

    Article  Google Scholar 

  26. Weiner DE, Tighiouart H, Levey AS, Elsayed E, Griffith JL, Salem DN, et al. Lowest systolic blood pressure is associated with stroke in stages 3 to 4 chronic kidney disease. J Am Soc Nephrol. 2007;18:960–6.

    Article  PubMed  Google Scholar 

  27. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351:1296–305.

    Article  CAS  PubMed  Google Scholar 

  28. Irie F, Iso H, Sairenchi T, Fukasawa N, Yamagishi K, Ikehara S, et al. The relationships of proteinuria, serum creatinine, glomerular filtration rate with cardiovascular disease mortality in Japanese general population. Kidney Int. 2006;69:1264–71.

    Article  PubMed  CAS  Google Scholar 

  29. Manjunath G, Tighiouart H, Ibrahim H, MacLeod B, Salem DN, Griffith JL, et al. Level of kidney function as a risk factor for atherosclerotic cardiovascular outcomes in the community. J Am Coll Cardiol. 2003;41:47–55.

    Article  PubMed  Google Scholar 

  30. Dinneen SF, Gerstein HC. The association of microalbuminuria and mortality in non-insulin-dependent diabetes mellitus. A systematic overview of the literature. Arch Int Med. 1997;157:1413–8.

    Article  CAS  Google Scholar 

  31. Gerstein HC, Mann JF, Yi Q, Zinman B, Dinneen SF, Hoogwerf B, et al. Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. JAMA. 2001;286:421–6.

    Article  PubMed  CAS  Google Scholar 

  32. Wachtell K, Ibsen H, Olsen MH, Borch-Johnsen K, Lindholm LH, Mogensen CE, et al. Albuminuria and cardiovascular risk in hypertensive patients with left ventricular hypertrophy: the LIFE study. Ann Int Med. 2003;139:901–6.

    Article  PubMed  Google Scholar 

  33. Hillege HL, Fidler V, Diercks GF, van Gilst WH, de Zeeuw D, van Veldhuisen DJ, et al. Urinary albumin excretion predicts cardiovascular and noncardiovascular mortality in general population. Circulation. 2002;106:1777–82.

    Article  PubMed  CAS  Google Scholar 

  34. Klausen K, Borch-Johnsen K, Feldt-Rasmussen B, Jensen G, Clausen P, Scharling H, et al. Very low levels of microalbuminuria are associated with increased risk of coronary heart disease and death independently of renal function, hypertension, and diabetes. Circulation. 2004;110:32–5.

    Article  PubMed  CAS  Google Scholar 

  35. Asselbergs FW, Diercks GF, Hillege HL, van Boven AJ, Janssen WM, Voors AA, et al. Effects of fosinopril and pravastatin on cardiovascular events in subjects with microalbuminuria. Circulation. 2004;110:2809–16.

    Article  PubMed  CAS  Google Scholar 

  36. de Zeeuw D, Remuzzi G, Parving HH, Keane WF, Zhang Z, Shahinfar S, et al. Albuminuria, a therapeutic target for cardiovascular protection in type 2 diabetic patients with nephropathy. Circulation. 2004;110:921–7.

    Article  PubMed  CAS  Google Scholar 

  37. Olsen MH, Wachtell K, Ibsen H, Lindholm LH, Dahlof B, Devereux RB, et al. Reductions in albuminuria and in electrocardiographic left ventricular hypertrophy independently improve prognosis in hypertension: the LIFE study. J Hypertens. 2006;24:775–81.

    Article  PubMed  CAS  Google Scholar 

Chapter 3: CKD and Life-style References

  1. Tozawa M, Iseki K, Iseki C, Oshiro S, Ikemiya Y, Takishita S. Influence of smoking and obesity on the development of proteinuria. Kidney Int. 2002;62:956–62.

    Article  PubMed  Google Scholar 

  2. Yamagata K, Ishida K, Sairenchi T, Takahashi H, Ohba S, Shiigai T, et al. Risk factors for chronic kidney disease in a community-based population: a 10-year follow-up study. Kidney Int. 2007;71:159–66.

    Article  PubMed  CAS  Google Scholar 

  3. Haroun MK, Jaar BG, Hoffman SC, Comstock GW, Klag MJ, Coresh J. Risk factors for chronic kidney disease: a prospective study of 23, 534 men and women in Washington County, Maryland. J Am Soc Nephrol. 2003;14:2934–41.

    Article  PubMed  Google Scholar 

  4. Chase HP, Garg SK, Marshall G, Berg CL, Harris S, Jackson WE, et al. Cigarette smoking increases the risk of albuminuria among subjects with type I diabetes. JAMA. 1991;265:614–7.

    Article  PubMed  CAS  Google Scholar 

  5. Ikeda Y, Suehiro T, Takamatsu K, Yamashita H, Tamura T, Hashimoto K. Effect of smoking on the prevalence of albuminuria in Japanese men with non-insulin-dependent diabetes mellitus. Diabetes Res Clin Pract. 1997;36:57–61.

    Article  PubMed  CAS  Google Scholar 

  6. Jones-Burton C, Seliger SL, Scherer RW, Mishra SI, Vessal G, Brown J, et al. Cigarette smoking and incident chronic kidney disease: a systematic review. Am J Nephrol. 2007;27:342–51.

    Article  PubMed  Google Scholar 

  7. Sawicki PT, Didjurgeit U, Muhlhauser I, Bender R, Heinemann L, Berger M. Smoking is associated with progression of diabetic nephropathy. Diabetes Care. 1994;17:126–31.

    Article  PubMed  CAS  Google Scholar 

  8. Orth SR, Schroeder T, Ritz E, Ferrari P. Effects of smoking on renal function in patients with type 1 and type 2 diabetes mellitus. Nephrol Dial Transplant. 2005;20:2414–9.

    Article  PubMed  Google Scholar 

  9. Ejerblad E, Fored CM, Lindblad P, Fryzek J, Dickman PW, Elinder CG, et al. Association between smoking and chronic renal failure in a nationwide population-based case–control study. J Am Soc Nephrol. 2004;15:2178–85.

    Article  PubMed  CAS  Google Scholar 

  10. Stengel B, Tarver-Carr ME, Powe NR, Eberhardt MS, Brancati FL. Lifestyle factors, obesity and the risk of chronic kidney disease. Epidemiology. 2003;14:479–87.

    PubMed  Google Scholar 

  11. Jungers P, Massy ZA, Nguyen Khoa T, Fumeron C, Labrunie M, Lacour B, et al. Incidence and risk factors of atherosclerotic cardiovascular accidents in predialysis chronic renal failure patients: a prospective study. Nephrol Dial Transplant. 1997;12:2597–602.

    Article  PubMed  CAS  Google Scholar 

  12. Muntner P, He J, Astor BC, Folsom AR, Coresh J. Traditional and nontraditional risk factors predict coronary heart disease in chronic kidney disease: results from the atherosclerosis risk in communities study. J Am Soc Nephrol. 2005;16:529–38.

    Article  PubMed  Google Scholar 

  13. Shlipak MG, Fried LF, Cushman M, Manolio TA, Peterson D, Stehman-Breen C, et al. Cardiovascular mortality risk in chronic kidney disease: comparison of traditional and novel risk factors. JAMA. 2005;293:1737–45.

    Article  PubMed  CAS  Google Scholar 

  14. Shankar A, Klein R, Klein BE. The association among smoking, heavy drinking, and chronic kidney disease. Am J Epidemiol. 2006;164:263–71.

    Article  PubMed  Google Scholar 

  15. Eidemak I, Haaber AB, Feldt-Rasmussen B, Kanstrup IL, Strandgaard S. Exercise training and the progression of chronic renal failure. Nephron. 1997;75:36–40.

    Article  PubMed  CAS  Google Scholar 

  16. Pechter U, Ots M, Mesikepp S, Zilmer K, Kullissaar T, Vihalemm T, et al. Beneficial effects of water-based exercise in patients with chronic kidney disease. Int J Rehabil Res. 2003;26:153–6.

    Article  PubMed  Google Scholar 

  17. Collins AJ, Foley R, Herzog C, Chavers B, Gilbertson D, Ishani A, et al. Excerpts from the United States Renal Data System 2007 annual data report. Am J Kidney Dis. 2008;51:S1–320.

    PubMed  Google Scholar 

Chapter 4: CKD and nutrition References

  1. Fouque D, Laville M, Boissel JP. Low protein diets for chronic kidney disease in non diabetic adults. Cochrane Database Syst Rev. 2006;19(2):CD001892.

    Google Scholar 

  2. Fouque D, Wang P, Laville M, Boissel JP. Low protein diets delay end-stage renal disease in non-diabetic adults with chronic renal failure. Nephrol Dial Transplant. 2000;15:1986–92.

    Article  PubMed  CAS  Google Scholar 

  3. Pedrini MT, Levey AS, Lau J, Chalmers TC, Wang PH. The effect of dietary protein restriction on the progression of diabetic and nondiabetic renal diseases: a meta-analysis. Ann Int Med. 1996;124:627–32.

    Article  PubMed  CAS  Google Scholar 

  4. Fouque D, Laville M, Boissel JP, Chifflet R, Labeeuw M, Zech PY. Controlled low protein diets in chronic renal insufficiency: meta-analysis. BMJ. 1992;304:216–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Kasiske BL, Lakatua JD, Ma JZ, Louis TA. A meta-analysis of the effects of dietary protein restriction on the rate of decline in renal function. Am J Kidney Dis. 1998;31:954–61.

    Article  PubMed  CAS  Google Scholar 

  6. Levey AS, Greene T, Sarnak MJ, Wang X, Beck GJ, Kusek JW, et al. Effect of dietary protein restriction on the progression of kidney disease: long-term follow-up of the Modification of Diet in Renal Disease (MDRD) Study. Am J Kidney Dis. 2006;48:879–88.

    Article  PubMed  CAS  Google Scholar 

  7. Rosman JB, ter Wee PM, Meijer S, Piers-Becht TP, Sluiter WJ, Donker AJ. Prospective randomised trial of early dietary protein restriction in chronic renal failure. Lancet. 1984;2:1291–6.

    Article  PubMed  CAS  Google Scholar 

  8. Rosman JB, Langer K, Brandl M, Piers-Becht TP, van der Hem GK, ter Wee PM, et al. Protein-restricted diets in chronic renal failure: a four year follow-up shows limited indications. Kidney Int. 1989;27(1):S96–102.

    CAS  Google Scholar 

  9. Locatelli F, Alberti D, Graziani G, Buccianti G, Redaelli B, Giangrande A. Prospective, randomised, multicentre trial of effect of protein restriction on progression of chronic renal insufficiency. Northern Italian Cooperative Study Group. Lancet. 1991;337:1299–304.

    Article  PubMed  CAS  Google Scholar 

  10. Zeller K, Whittaker E, Sullivan L, Raskin P, Jacobson HR. Effect of restricting dietary protein on the progression of renal failure in patients with insulin-dependent diabetes mellitus. N Engl J Med. 1991;324:78–84.

    Article  PubMed  CAS  Google Scholar 

  11. D’Amico G, Gentile MG, Fellin G, Manna G, Cofano F. Effect of dietary protein restriction on the progression of renal failure: a prospective randomized trial. Nephrol Dial Transplant. 1994;9:1590–4.

    PubMed  Google Scholar 

  12. Cianciaruso B, Bellizzi V, Capuano A, Bovi G, Nastasi A, Conte G, et al. Short-term effects of low protein-normal sodium diet on renal function in chronic renal failure. Kidney Int. 1994;45:852–60.

    Article  PubMed  CAS  Google Scholar 

  13. Meloni C, Morosetti M, Suraci C, Pennafina MG, Tozzo C, Taccone-Gallucci M, et al. Severe dietary protein restriction in overt diabetic nephropathy: benefits or risks? J Ren Nutr. 2002;12:96–101.

    Article  PubMed  Google Scholar 

  14. Meloni C, Tatangelo P, Cipriani S, Rossi V, Suraci C, Tozzo C, et al. Adequate protein dietary restriction in diabetic and nondiabetic patients with chronic renal failure. J Ren Nutr. 2004;14:208–13.

    Article  PubMed  Google Scholar 

  15. Maschio G, Oldrizzi L, Tessitore N, D’Angelo A, Valvo E, Lupo A, et al. Effects of dietary protein and phosphorus restriction on the progression of early renal failure. Kidney Int. 1982;22:371–6.

    Article  PubMed  CAS  Google Scholar 

  16. Hansen HP, Tauber-Lassen E, Jensen BR, Parving HH. Effect of dietary protein restriction on prognosis in patients with diabetic nephropathy. Kidney Int. 2002;62:220–8.

    Article  PubMed  Google Scholar 

  17. Ihle BU, Becker GJ, Whitworth JA, Charlwood RA, Kincaid-Smith PS. The effect of protein restriction on the progression of renal insufficiency. N Engl J Med. 1989;321:1773–7.

    Article  PubMed  CAS  Google Scholar 

  18. Feiten SF, Draibe SA, Watanabe R, Duenhas MR, Baxmann AC, Nerbass FB, et al. Short-term effects of a very-low-protein diet supplemented with ketoacids in nondialyzed chronic kidney disease patients. Eur J Clin Nutr. 2005;59:129–36.

    Article  PubMed  CAS  Google Scholar 

  19. Gretz N, Korb E, Strauch M. Low-protein diet supplemented by keto acids in chronic renal failure: a prospective controlled study. Kidney Int. 1983;16 Suppl:S263–7.

    CAS  Google Scholar 

  20. Ideura T, Shimazui M, Higuchi K, Morita H, Yoshimura A. Effect of nonsupplemented low-protein diet on very late stage CRF. Am J Kidney Dis. 2003;41(3 Suppl 1):S31–4.

    Article  PubMed  Google Scholar 

  21. Jungers P, Chauveau P, Ployard F, Lebkiri B, Ciancioni C, Man NK. Comparison of ketoacids and low protein diet on advanced chronic renal failure progression. Kidney Int. 1987;22 Suppl:S67–71.

    CAS  Google Scholar 

  22. Ideura T, Shimazui M, Morita H, Yoshimura A. Protein intake of more than 0.5 g/kg BW/day is not effective in suppressing the progression of chronic renal failure. Contrib Nephrol. 2007;155:40–9.

    Article  PubMed  CAS  Google Scholar 

  23. Prakash S, Pande DP, Sharma S, Sharma D, Bal CS, Kulkarni H. Randomized, double-blind, placebo-controlled trial to evaluate efficacy of ketodiet in predialytic chronic renal failure. J Ren Nutr. 2004;14:89–96.

    Article  PubMed  Google Scholar 

  24. Mircescu G, Garneata L, Stancu SH, Capusa C. Effects of a supplemented hypoproteic diet in chronic kidney disease. J Ren Nutr. 2007;17:179–88.

    Article  PubMed  Google Scholar 

  25. Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, et al. DASH-Sodium Collaborative Research Group. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N Engl J Med. 2001;344:3–10.

    Article  PubMed  CAS  Google Scholar 

  26. Swift PA, Markandu ND, Sagnella GA, He FJ, MacGregor GA. Modest salt reduction reduces blood pressure and urine protein excretion in black hypertensives: a randomized control trial. Hypertension. 2005;46:308–12.

    Article  PubMed  CAS  Google Scholar 

  27. Cianciaruso B, Bellizzi V, Minutolo R, Tavera A, Capuano A, Conte G, et al. Salt intake and renal outcome in patients with progressive renal disease. Miner Electrolyte Metab. 1998;24:296–301.

    Article  PubMed  CAS  Google Scholar 

  28. Buter H, Hemmelder MH, Navis G, de Jong PE, de Zeeuw D. The blunting of the antiproteinuric efficacy of ACE inhibition by high sodium intake can be restored by hydrochlorothiazide. Nephrol Dial Transplant. 1998;13:1682–5.

    Article  PubMed  CAS  Google Scholar 

Referred guidelines and others

  • a. Dietary reference intakes for Japanese (2005). The report from the scientific committee of “Dietary reference intakes for Japanese: Recommended dietary allowance”. Ministry of Health, Labour and Welfare, Japan. Daiichi Shuppan, Tokyo, 2005

Chapter 5: Hypertension and CVD in CKD References

  1. Shulman NB, Ford CE, Hall WD, Blaufox MD, Simon D, Langford HG, et al. Prognostic value of serum creatinine and effect of treatment of hypertension on renal function. Results from the hypertension detection and follow-up program. The Hypertension Detection and Follow-up Program Cooperative Group. Hypertension. 1989;13 Suppl 5:80–93.

    Article  Google Scholar 

  2. Walker WG, Neaton JD, Cutler JA, Neuwirth R, Cohen JD. Renal function change in hypertensive members of the Multiple Risk Factor Intervention Trial. Racial and treatment effects. The MRFIT Research Group. JAMA. 1992;268:3085–91.

    Article  PubMed  CAS  Google Scholar 

  3. Bakris GL, Williams M, Dworkin L, Elliott WJ, Epstein M, Toto R, et al. Preserving renal function in adults with hypertension and diabetes: a consensus approach. National Kidney Foundation Hypertension and Diabetes Executive Committees Working Group. Am J Kidney Dis. 2000;36:646–61.

    Article  PubMed  CAS  Google Scholar 

  4. Andersen MJ, Khawandi W, Agarwal R. Home blood pressure monitoring in CKD. Am J Kidney Dis. 2005;45:994–1001.

    Article  PubMed  Google Scholar 

  5. Agarwal R, Andersen MJ. Prognostic importance of clinic and home blood pressure recordings in patients with chronic kidney disease. Kidney Int. 2006;69:406–11.

    Article  PubMed  CAS  Google Scholar 

  6. Peterson JC, Adler S, Burkart JM, Greene T, Hebert LA, Hunsicker LG, et al. Blood pressure control, proteinuria, and the progression of renal disease. The Modification of Diet in Renal Disease Study. Ann Int Med. 1995b;23:754–62.

    Article  Google Scholar 

  7. Jafar TH, Stark PC, Schmid CH, Landa M, Maschio G, de Jong PE, et al. Progression of chronic kidney disease: the role of blood pressure control, proteinuria, and angiotensin-converting enzyme inhibition: a patient-level meta-analysis. Ann Int Med. 2003;139:244–52.

    Article  PubMed  CAS  Google Scholar 

  8. Jafar TH, Schmid CH, Landa M, Giatras I, Toto R, Remuzzi G, et al. Angiotensin-converting enzyme inhibitors and progression of nondiabetic renal disease. A meta-analysis of patient-level data. Ann Int Med. 2001b;135:73–87.

    Article  PubMed  CAS  Google Scholar 

  9. MacKinnon M. Combination therapy with an angiotensin receptor blocker and an ACE inhibitor in proteinuric renal disease: a systematic review of the efficacy and safety data. Am J Kidney Dis. 2006;48:8–20.

    Article  PubMed  CAS  Google Scholar 

  10. Law MR, Wald NJ, Morris JK, Jordan RE. Value of low dose combination treatment with blood pressure lowering drugs: analysis of 354 randomised trials. BMJ. 2003;326:1427–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Marre M, Puig JG, Kokot F, Fernandez M, Jermendy G, Opie L, et al. Equivalence of indapamide SR and enalapril on microalbuminuria reduction in hypertensive patients with type 2 diabetes: the NESTOR Study. J Hypertens. 2004;22:1613–22.

    Article  PubMed  CAS  Google Scholar 

  12. Anavekar NS, McMurray JJ, Velazquez EJ, Solomon SD, Kober L, Rouleau JL, et al. Relation between renal dysfunction and cardiovascular outcomes after myocardial infarction. N Engl J Med. 2004b;351:1285–95.

    Article  PubMed  CAS  Google Scholar 

  13. Irie F, Iso H, Sairenchi T, Fukasawa N, Yamagishi K, Ikehara S, et al. The relationships of proteinuria, serum creatinine, glomerular filtration rate with cardiovascular disease mortality in Japanese general population. Kidney Int. 2006b;69:1264–71.

    Article  PubMed  CAS  Google Scholar 

  14. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004b;351:1296–305.

    Article  CAS  PubMed  Google Scholar 

  15. Abramson JL, Jurkovitz CT, Vaccarino V, Weintraub WS, MeClellan W. Chronic kidney disease, anemia, and incident stroke in a middle-aged, community-based population: the ARIC Study. Kidney lnt. 2003;64:610–5.

    Article  Google Scholar 

  16. Koren-Morag N, GoIdbourt U, Tanne D. Renal dysfunction and risk of ischemic stroke or TIA in patients with cardiovascular diseases. Neurology. 2006;67:224–8.

    Article  PubMed  CAS  Google Scholar 

  17. Nakayama M, Metoki H, Terawaki H, Ohkubo T, Kikuya M, Sato T, et al. Kidney dysfunction as a risk factor for first symptomatic stroke events in a general Japanese population—the Ohasama study. Nephrol Dial Transplant. 2007b;22:1910–5.

    Article  PubMed  Google Scholar 

  18. Casas JP, Chua W, Loukogeorgakis S, Vallance P, Smeeth L, Hingorani AD, et al. Effect of inhibitors of the renin–angiotensin system and other antihypertensive drugs on renal outcomes: systematic review and meta-analysis. Lancet. 2005;366:2026–33.

    Article  PubMed  CAS  Google Scholar 

  19. Gerstein HC, Mann JF, Yi Q, Zinman B, Dinneen SF, Hoogwerf B, et al. Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. JAMA. 2001b;286:421–6.

    Article  PubMed  CAS  Google Scholar 

  20. de Zeeuw D, Remuzzi G, Parving HH, Keane WF, Zhang Z, Shahinfar S, et al. Albuminuria, a therapeutic target for cardiovascular protection in type 2 diabetic patients with nephropathy. Circulation. 2004b;110:921–7.

    Article  PubMed  CAS  Google Scholar 

  21. de Zeeuw D, Remuzzi G, Parving HH, Keane WF, Zhang Z, Shahinfar S, et al. Proteinuria, a target for renoprotection in patients with type 2 diabetic nephropathy: lessons from RENAAL. Kidney Int. 2004c;65:2309–20.

    Article  PubMed  Google Scholar 

  22. Ibsen H, Olsen MH, Wachtell K, Borch-Johnsen K, Lindholm LH, Mogensen CE, et al. Reduction in albuminuria translates to reduction in cardiovascular events in hypertensive patients: losartan intervention for endpoint reduction in hypertension study. Hypertension. 2005;45:181–2.

    Article  CAS  Google Scholar 

Chapter 6: Renal anemia References

  1. Astor BC, Muntner P, Levin A, Eustace JA, Coresh J. Association of kidney function with anemia: the third national health and nutrition examination survey (1988–1994). Arch Int Med. 2002;162:1401–8.

    Article  Google Scholar 

  2. Weiner DE, Tighiouart H, Vlagopoulos PT, Griffith JL, Salem DN, Levey AS, et al. Effects of anemia and left ventricular hypertrophy on cardiovascular disease in patients with chronic kidney disease. J Am Soc Nephrol. 2005;16:1803–10.

    Article  PubMed  Google Scholar 

  3. Vlagopoulos PT, Tighiouart H, Weiner DE, Griffith J, Pettitt D, Salem DN, et al. Anemia as a risk factor for cardiovascular disease and all-cause mortality in diabetes: the impact of chronic kidney disease. J Am Soc Nephrol. 2005;16:3403–10.

    Article  PubMed  Google Scholar 

  4. Al-Ahmad A, Rand WM, Manjunath G, Konstam MA, Salem DN, Levey AS, et al. Reduced kidney function and anemia as risk factors for mortality in patients with left ventricular dysfunction. J Am Coll Cardiol. 2001;38:955–62.

    Article  PubMed  CAS  Google Scholar 

  5. Hayashi T, Suzuki A, Shoji T, Togawa M, Okada N, Tsubakihara Y, et al. Cardiovascular effect of normalizing the hematocrit level during erythropoietin therapy in predialysis patients with chronic renal failure. Am J Kidney Dis. 2000;35:250–6.

    Article  PubMed  CAS  Google Scholar 

  6. Roth D, Smith RD, Schulman G, Steinman TI, Hatch FE, Rudnick MR, et al. Effects of recombinant human erythropoietin on renal function in chronic renal failure predialysis patients. Am J Kidney Dis. 1994;24:777–84.

    Article  PubMed  CAS  Google Scholar 

  7. Silverberg DS, Wexler D, Sheps D, Blum M, Keren G, Baruch R, et al. The effect of correction of mild anemia in severe, resistant congestive heart failure using subcutaneous erythropoietin and intravenous iron: a randomized controlled study. J Am Coll Cardiol. 2001;37:1775–80.

    Article  PubMed  CAS  Google Scholar 

  8. Kuriyama S, Tomonari H, Yoshida H, Hashimoto T, Kawaguchi Y, Sakai O. Reversal of anemia by erythropoietin therapy retards the progression of chronic renal failure, especially in nondiabetic patients. Nephron. 1997;77:176–85.

    Article  PubMed  CAS  Google Scholar 

  9. Ritz E, Laville M, Bilous RW, O’Donoghue D, Scherhag A, Burger U, et al. Target level for hemoglobin correction in patients with diabetes and CKD: primary results of the Anemia Correction in Diabetes (ACOR) Study. Am J Kidney Dis. 2007;49:194–207.

    Article  PubMed  CAS  Google Scholar 

  10. Gouva C, Nikolopoulos P, Ioannidis JP, Siamopoulos KC. Treating anemia early in renal failure patients slows the decline of renal function: a randomized controlled trial. Kidney Int. 2004;66:753–60.

    Article  PubMed  Google Scholar 

  11. Drüeke TB, Locatelli F, Clyne N, Eckardt KU, Macdougall IC, Tsakiris D, et al. Normalization of hemoglobin level in patients with chronic kidney disease and anemia. N Engl J Med. 2006;355:2071–84.

    Article  PubMed  Google Scholar 

  12. Singh AK, Szczech L, Tang KL, Barnhart H, Sapp S, Wolfson M, et al. Correction of anemia with epoetin alfa in chronic kidney disease. N Engl J Med. 2006;355:2085–98.

    Article  PubMed  CAS  Google Scholar 

  13. Phrommintikul A, Haas SJ, Elsik M, Krum H. Mortality and target haemoglobin concentrations in anaemic patients with chronic kidney disease treated with erythropoietin: a meta-analysis. Lancet. 2007;369:381–8.

    Article  PubMed  CAS  Google Scholar 

  14. Szczech LA, Barnhart HX, Inrig JK, Reddan DN, Sapp S, Califf RM, et al. Secondary analysis of the CHOIR trial epoetin-alpha dose and achieved hemoglobin outcomes. Kidney Int. 2008;74:791–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Chapter 7: Mineral and bone disorder in CKD References

  1. Kestenbaum B, Sampson JN, Rudser KD, Patterson DJ, Seliger SL, Young B, et al. Serum phosphate levels and mortality risk among people with chronic kidney disease. J Am Soc Nephrol. 2005;16:520–8.

    Article  PubMed  CAS  Google Scholar 

  2. Schwarz S, Trivedi BK, Kalantar-Zadeh K, Kovesdy CP. Association of disorders in mineral metabolism with progression of chronic kidney disease. Clin J Am Soc Nephrol. 2006;1:825–31.

    Article  PubMed  CAS  Google Scholar 

  3. Ritz E, Küster S, Schmidt-Gayk H, Stein G, Scholz C, Kraatz G, et al. Low-dose calcitriol prevents the rise in 1, 84-iPTH without affecting serum calcium and phosphate in patients with moderate renal failure (prospective placebo-controlled multicentre trial). Nephrol Dial Transplant. 1995;10:2228–34.

    Article  PubMed  CAS  Google Scholar 

  4. Coyne D, Acharya M, Qiu P, Abboud H, Batlle D, Rosansky S, et al. Paricalcitol capsule for the treatment of secondary hyperparathyroidism in stages 3 and 4 CKD. Am J Kidney Dis. 2006;47:263–76.

    Article  PubMed  CAS  Google Scholar 

  5. Agarwal R, Acharya M, Tian J, Hippensteel RL, Melnick JZ, Qiu P, et al. Antiproteinuric effect of oral paricalcitol in chronic kidney disease. Kidney Int. 2005;68:2823–8.

    Article  PubMed  CAS  Google Scholar 

  6. Rix M, Eskildsen P, Olgaard K. Effect of 18 months of treatment with alfacalcidol on bone in patients with mild to moderate chronic renal failure. Nephrol Dial Transplant. 2004;19:870–6.

    Article  PubMed  CAS  Google Scholar 

  7. Panichi V, Andreini B, De Pietro S, Migliori M, Taccola D, Giovannini L, et al. Calcitriol oral therapy for the prevention of secondary hyperparathyroidism in patients with predialytic renal failure. Clin Nephrol. 1998;49:245–50.

    PubMed  CAS  Google Scholar 

  8. Hamdy NA, Kanis JA, Beneton MN, Brown CB, Juttmann JR, Jordans JG, et al. Effect of alfacalcidol on natural course of renal bone disease in mild to moderate renal failure. BMJ. 1995;310:358–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Shoben AB, Rudser KD, de Boer IH, Young B, Kestenbaum B. Association of oral calcitriol with improved survival in nondialyzed CKD. J Am Soc Nephrol. 2008;19:1613–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Referred guidelines and others

  • a. Moe S, Drüeke T, Cunningham J, Goodman W, Martin K, Olgaard K, Ott S, Sprague S, Lameire N, Eknoyan G. Kidney Disease:Improving Global Outcomes (KDIGO). Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease:Improving Global Outcomes(KDIGO). Kidney Int. 2006;69:1945–53

    Article  PubMed  CAS  Google Scholar 

Chapter 8: Diabetic Nephropathy References

  1. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329:977–86.

    Article  Google Scholar 

  2. Reichard P, Nilsson BY, Rosenqvist U. The effect of long-term intensified insulin treatment on the development of microvascular complications of diabetes mellitus. N Engl J Med. 1993;329:304–9.

    Article  PubMed  CAS  Google Scholar 

  3. Ohkubo Y, Kishikawa H, Araki E, Miyata T, Isami S, Motoyoshi S, et al. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract. 1995;28:103–17.

    Article  PubMed  CAS  Google Scholar 

  4. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352:837–53.

    Article  Google Scholar 

  5. UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ. 1998;317:703–13.

    Article  PubMed Central  Google Scholar 

  6. UK Prospective Diabetes Study Group. Efficacy of atenolol and captopril in reducing risk of macrovascular and microvascular complications in type 2 diabetes:UKPDS 39. BMJ. 1998b;317:713–20.

    Article  PubMed Central  Google Scholar 

  7. Schnack C, Hoffmann W, Hopmeier P, Schernthaner G. Renal and metabolic effects of 1-year treatment with ramipril or atenolol in NIDDM patients with microalbuminuria. Diabetologia. 1996;39:1611–6.

    Article  PubMed  CAS  Google Scholar 

  8. Shiba T, Inoue M, Tada H, Hayashi Y, Okuda Y, Fujita R, et al. Delapril versus manidipine in hypertensive therapy to halt the type-2-diabetes-mellitus-associated nephropathy. Diabetes Res Clin Pract. 2000;47:97–104.

    Article  PubMed  CAS  Google Scholar 

  9. Agardh CD, Garcia-Puig J, Charbonnel B, Angelkort B, Batnett AH. Greater reduction of urinary albumin excretion in hypertensive type II diabetic patients with incipient nephropathy by lisinopril than by nifedipine. J Hum Hypertens. 1996;10:185–92.

    PubMed  CAS  Google Scholar 

  10. Heart Outcomes Prevention Evaluation Study Investigators. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Lancet. 2000;355:253–9.

    Article  Google Scholar 

  11. Velussi M, Brocco E, Frigato F, Zolli M, Muollo B, Maioli M, et al. Effects of cilazapril and amlodipine on kidney function in hypertensive NIDDM patients. Diabetes. 1996;45:216–22.

    Article  PubMed  CAS  Google Scholar 

  12. Baba S. Nifedipine and enalapril equally reduce the progression of nephropathy in hypertensive type 2 diabetics. Diabetes Res Clin Pract. 2001;54:191–201.

    Article  PubMed  CAS  Google Scholar 

  13. Ruggenenti P, Fassi A, Ilieva AP, Bruno S, Iliev IP, Brusegan V, et al. Preventing microalbuminuria in type 2 diabetes. N Engl J Med. 2004;351:1941–51.

    Article  PubMed  CAS  Google Scholar 

  14. Sengul AM, Altuntas Y, Kürklü A, Aydin L. Beneficial effect of lisinopril plus telmisartan in patients with type 2 diabetes, microalbuminuria and hypertension. Diabetes Res Clin Pract. 2006;71:210–9.

    Article  PubMed  CAS  Google Scholar 

  15. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med. 1993;329:1456–62.

    Article  PubMed  CAS  Google Scholar 

  16. Lewis JB, Berl T, Bain RP, Rohde RD, Lewis EJ. Effect of intensive blood pressure control on the course of type 1 diabetic nephropathy. Collaborative Study Group. Am J Kidney Dis. 1999;34:809–17.

    Article  PubMed  CAS  Google Scholar 

  17. Barnett AH, Bain SC, Bouter P, Karlberg B, Madsbad S, Jervell J, et al. Angiotensin-receptor blockade versus converting-enzyme inhibition in type 2 diabetes and nephropathy. N Engl J Med. 2004;351:1952–61.

    Article  PubMed  CAS  Google Scholar 

  18. Barnett AH. Preventing renal complications in type 2 diabetes: results of the diabetics exposed to telmisartan and enalapril trial. J Am Soc Nephrol. 2006;17:S132–5.

    Article  PubMed  CAS  Google Scholar 

  19. Ravid M, Brosh D, Levi Z, Bar-Dayan Y, Ravid D, Rachmani R. Use of enalapril to attenuate decline in renal function in normotensive, normoalbuminuric patients with type 2 diabetes mellitus. A randomized, controlled trial. Ann Int Med. 1998;128:982–8.

    Article  PubMed  CAS  Google Scholar 

  20. Ogawa S, Takeuchi K, Mori T, Naka K, Tsubono Y, Ito S. Effects of monotherapy of temocapril or candesartan with dose increments or combination therapy with both drugs on the suppression of diabetic nephropathy. Hypertens Res. 2007;30:325–34.

    Article  PubMed  CAS  Google Scholar 

  21. Parving HH, Lehnert H, Bröchner-Mortensen J, Gomis R, Andersen S, Arner P, et al. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med. 2001;345:870–8.

    Article  PubMed  CAS  Google Scholar 

  22. Viberti G, Wheeldon NM. Microalbuminuria reduction with valsartan in patients with type 2 diabetes mellitus: a blood pressure-independent effect. Circulation. 2002;106:672–8.

    Article  PubMed  CAS  Google Scholar 

  23. Makino H, Haneda M, Babazono T, Moriya T, Ito S, Iwamoto Y, et al. Prevention of transition from incipient to overt nephropathy with telmisartan in patients with type 2 diabetes. Diabetes Care. 2007;30:1577–8.

    Article  PubMed  CAS  Google Scholar 

  24. Shiga Microalbuminuria Reduction Trial (SMART) Group, Uzu T, Sawaguchi M, Maegawa H, Kashiwagi A. Reduction of microalbuminuria in patients with type 2 diabetes: Shiga Microalbuminuria Reduction Trial (SMART). Diabetes Care. 2007;30:1581–3.

    Article  CAS  Google Scholar 

  25. Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med. 2001;345:851–60.

    Article  PubMed  CAS  Google Scholar 

  26. Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345:861–9.

    Article  PubMed  CAS  Google Scholar 

  27. Sano T, Kawamura T, Matsumae H, Sasaki H, Nakayama M, Hara T, et al. Effects of long-term enalapril treatment on persistent micro-albuminuria in well-controlled hypertensive and normotensive NIDDM patients. Diabetes Care. 1994;17:420–4.

    Article  PubMed  CAS  Google Scholar 

  28. Ravid M, Savin H, Jutrin I, Bental T, Katz B, Lishner M. Long-term stabilizing effect of angiotensin-converting enzyme inhibition on plasma creatinine and on proteinuria in normotensive type II diabetic patients. Ann Int Med. 1993;118:577–81.

    Article  PubMed  CAS  Google Scholar 

  29. Ahmad J, Siddiqui MA, Ahmad H. Effective postponement of diabetic nephropathy with enalapril in normotensive type 2 diabetic patients with microalbuminuria. Diabetes Care. 1997;20:1576–81.

    Article  PubMed  CAS  Google Scholar 

  30. Viberti G, Mogensen CE, Groop LC, Pauls JF. Effect of captopril on progression to clinical proteinuria in patients with insulin-dependent diabetes mellitus and microalbuminuria. European Microalbuminuria Captopril Study Group. JAMA. 1994;271:275–9.

    Article  PubMed  CAS  Google Scholar 

  31. Laffel LM, McGill JB, Gans DJ. The beneficial effect of angiotensin-converting enzyme inhibition with captopril on diabetic nephropathy in normotensive IDDM patients with microalbuminuria. North American Microalbuminuria Study Group. Am J Med. 1995;99:497–504.

    Article  PubMed  CAS  Google Scholar 

  32. The Microalbuminuria Captopril Study Group. Captopril reduces the risk of nephropathy in IDDM patients with microalbuminuria. Diabetologia. 1996;39:587–93.

    Article  Google Scholar 

  33. Crepaldi G, Carta Q, Deferrari G, Mangili R, Navalesi R, Santeusanio F, et al. Effects of lisinopril and nifedipine on the progression to overt albuminuria in IDDM patients with incipient nephropathy and normal blood pressure. The Italian Microalbuminuria Study Group in IDDM. Diabetes Care. 1998;21:104–10.

    Article  PubMed  CAS  Google Scholar 

  34. Katayama S, Kikkawa R, Isogai S, Sasaki N, Matsuura N, Tajima N, et al. Effect of captopril or imidapril on the progression of diabetic nephropathy in Japanese with type 1 diabetes mellitus: a randomized controlled study (JAPAN-IDDM). Diabetes Res Clin Pract. 2002;55:113–21.

    Article  PubMed  CAS  Google Scholar 

  35. ACE Inhibitors in Diabetic Nephropathy Trialist Group. Should all patients with type 1 diabetes mellitus and microalbuminuria receive angiotensin-converting enzyme inhibitors? A meta-analysis of individual patient data. Ann Int Med. 2001;134:370–9.

    Article  Google Scholar 

  36. Zeller K, Whittaker E, Sullivan L, Raskin P, Jacobson HR. Effect of restricting dietary protein on the progression of renal failure in patients with insulin-dependent diabetes mellitus. N Engl J Med. 1991b;324:78–84.

    Article  PubMed  CAS  Google Scholar 

  37. Dullaart RP, Beusekamp BJ, Meijer S, van Doormaal JJ, Sluiter WJ. Long-term effects of protein-restricted diet on albuminuria and renal function in IDDM patients without clinical nephropathy and hypertension. Diabetes Care. 1993;16:483–92.

    Article  PubMed  CAS  Google Scholar 

  38. Hansen HP, Tauber-Lassen E, Jensen BR, Parving HH. Effect of dietary protein restriction on prognosis in patients with diabetic nephropathy. Kidney Int. 2002b;62:220–8.

    Article  PubMed  Google Scholar 

  39. Pedrini MT, Levey AS, Lau J, Chalmers TC, Wang PH. The effect of dietary protein restriction on the progression of diabetic and nondiabetic renal diseases: a meta-analysis. Ann Int Med. 1996b;124:627–32.

    Article  PubMed  CAS  Google Scholar 

  40. Kasiske BL, Lakatua JD, Ma JZ, Louis TA. A meta-analysis of the effects of dietary protein restriction on the rate of decline in renal function. Am J Kidney Dis. 1998b;31:954–61.

    Article  PubMed  CAS  Google Scholar 

  41. Robertson L, Waugh N, Robertson A. Protein restriction for diabetic renal disease. Cochrane Database Syst Rev. 2007 Oct 17;(4):CD002181

  42. Pijls LT, de Vries H, Donker AJ, van Eijk JT. The effect of protein restriction on albuminuria in patients with type 2 diabetes mellitus: a randomized trial. Nephrol Dial Transplant. 1999;14:1445–53.

    Article  PubMed  CAS  Google Scholar 

  43. Gaede P, Vedel P, Larsen N, Jensen GV, Parving HH, Pedersen O. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med. 2003;348:383–93.

    Article  PubMed  Google Scholar 

  44. Gaede P, Lund-Andersen H, Parving HH, Pedersen O. Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med. 2008;7(358):580–91.

    Article  Google Scholar 

Chapter 9: IgA nephropathy References

  1. Koyama A, Igarashi M, Kobayashi M. Natural history and risk factors for immunoglobulin A nephropathy in Japan. Research Group on Progressive Renal Diseases. Am J Kidney Dis. 1997;29:526–32.

    Article  PubMed  CAS  Google Scholar 

  2. Wakai K, Kawamura T, Endoh M, Kojima M, Tomino Y, Tamakoshi A, et al. A scoring system to predict renal outcome in IgA nephropathy: from a nationwide prospective study. Nephrol Dial Transplant. 2006;21:2800–8.

    Article  PubMed  Google Scholar 

  3. Schena FP, Montenegro M, Scivittaro V. Meta-analysis of randomised controlled trials in patients with primary IgA nephropathy (Berger’s disease). Nephrol Dial Transplant. 1990;5 Suppl 1:47–52.

    Article  PubMed  Google Scholar 

  4. Strippoli GF, Manno C, Schena FP. An “evidence-based” survey of therapeutic options for IgA nephropathy: assessment and criticism. Am J Kidney Dis. 2003;41:1129–39.

    Article  PubMed  CAS  Google Scholar 

  5. Praga M, Gutiérrez E, González E, Morales E, Hernández E. Treatment of IgA nephropathy with ACE inhibitors: a randomized and controlled trial. J Am Soc Nephrol. 2003;14:1578–83.

    Article  PubMed  CAS  Google Scholar 

  6. Coppo R, Peruzzi L, Amore A, Piccoli A, Cochat P, Stone R, et al. IgACE:a placebo-controlled, randomized trial of angiotensin-converting enzyme inhibitors in children and young people with IgA nephropathy and moderate proteinuria. J Am Soc Nephrol. 2007;18:1880–8.

    Article  PubMed  CAS  Google Scholar 

  7. Kobayashi Y, Hiki Y, Kokubo T, Horii A, Tateno S. Steroid therapy during the early stage of progressive IgA nephropathy. A 10-year follow-up study. Nephron. 1996;72:237–42.

    Article  PubMed  CAS  Google Scholar 

  8. Samuels JA, Strippoli GF, Craig JC, Schena FP, Molony DA. Immunosuppressive treatments for immunoglobulin A nephropathy: a meta-analysis of randomized controlled trials. Nephrology. 2004;9:177–85.

    Article  PubMed  CAS  Google Scholar 

  9. Pozzi C, Bolasco PG, Fogazzi GB, Andrulli S, Altieri P, Ponticelli C, et al. Corticosteroids in IgA nephropathy: a randomised controlled trial. Lancet. 1999;353:883–7.

    Article  PubMed  CAS  Google Scholar 

  10. Pozzi C, Andrulli S, Del Vecchio L, Melis P, Fogazzi GB, Altieri P, et al. Corticosteroid effectiveness in IgA nephropathy: long-term results of a randomized, controlled trial. J Am Soc Nephrol. 2004;15:157–63.

    Article  PubMed  CAS  Google Scholar 

  11. Miyazaki M, Hotta O, Komatsuda A, Nakai S, Shoji T, Yasunaga C, et al. A multicenter prospective cohort study of tonsillectomy and steroid therapy in Japanese patients with IgA nephropathy: a 5-year report. Contrib Nephrol. 2007;157:94–8.

    PubMed  CAS  Google Scholar 

  12. Komatsu H, Fujimoto S, Hara S, Sato Y, Yamada K, Kitamura K. Effect of tonsillectomy plus steroid pulse therapy on clinical remission of IgA nephropathy: a controlled study. Clin J Am Soc Nephrol. 2008;3:1301–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Sato M, Hotta O, Tomioka S, Horigome I, Chiba S, Miyazaki M, et al. Cohort study of advanced IgA nephropathy: efficacy and limitations of corticosteroids with tonsillectomy. Nephron Clin Pract. 2003;93:137–45.

    Article  CAS  Google Scholar 

  14. Taji Y, Kuwahara T, Shikata S, Morimoto T. Meta-analysis of antiplatelet therapy for IgA nephropathy. Clin Exp Nephrol. 2006;10:268–73.

    Article  PubMed  CAS  Google Scholar 

Chapter 10: Nephrotic syndrome (Idiopathic membranous nephropathy, and primary focal segmental glomerulosclerosis) References

  1. Hogan SL, Muller KE, Jennette JC, Falk RJ. A review of therapeutic studies of idiopathic membranous glomerulopathy. Am J Kidney Dis. 1995;25:862–75.

    Article  PubMed  CAS  Google Scholar 

  2. Imperiale TF, Goldfarb S, Berns JS. Are cytotoxic agents beneficial in idiopathic membranous nephropathy? A meta-analysis of the controlled trials. J Am Soc Nephrol. 1995;5:1553–8.

    PubMed  CAS  Google Scholar 

  3. Schieppati A, Perna A, Zamora J, Giuliano GA, Braun N, Remuzzi G. Immunosuppressive treatment for idiopathic membranous nephropathy in adults with nephrotic syndrome. Cochrane Database Syst Rev. 2004;18:CD004293.

    Google Scholar 

  4. Jha V, Ganguli A, Saha TK, Kohli HS, Snd K, Gupta KL, et al. A randomized, controlled trial of steroid and cyclophosphamide in adults with nephrotic syndrome caused by idiopathic membranous nephropathy. J Am Soc Nephrol. 2007;18:1899–904.

    Article  PubMed  CAS  Google Scholar 

  5. Ponticelli C, Zucchelli P, Passerini P, Cagnoli L, Cesana B, Pozzi C, et al. A randomized trial of methylprednisolone and chlorambucil in idiopathic membranous nephropathy. N Engl J Med. 1989;320:8–13.

    Article  PubMed  CAS  Google Scholar 

  6. Ponticelli C, Zucchelli P, Passerini P, Cesana B, Locatelli F, Pasquali S, et al. A 10-year follow-up of a randomized study with methylprednisolone and chlorambucil in membranous nephropathy. Kidney Int. 1995;48:1600–4.

    Article  PubMed  CAS  Google Scholar 

  7. Ponticelli C, Zucchelli P, Passerini P, Cesana B. Methylprednisolone plus chlorambucil as compared with methylprednisolone alone for the treatment of idiopathic membranous nephropathy. The Italian Idiopathic Membranous Nephropathy Treatment Study Group. N Engl J Med. 1992;327:599–603.

    Article  PubMed  CAS  Google Scholar 

  8. Ponticelli C, Altieri P, Scolari F, Passerini P, Roccatello D, Cesana B, et al. A randomized study comparing methylprednisolone plus chlorambucil versus methylprednisolone plus cyclophosphamide in idiopathic membranous nephropathy. J Am Soc Nephrol. 1998;9:444–50.

    PubMed  CAS  Google Scholar 

  9. Cattran DC, Appel GB, Hebert LA, Hunsicker LG, Pohl MA, Hoy WE, et al. Cyclosporine in patients with steroid-resistant membranous nephropathy:a randomized trial. Kidney Int. 2001;59:1484–90.

    Article  PubMed  CAS  Google Scholar 

  10. Banfi G, Moriggi M, Sabadini E, Fellin G, D’Amico G, Ponticelli C. The impact of prolonged immunosuppression on the outcome of idiopathic focal-segmental glomerulosclerosis with nephrotic syndrome in adults. A collaborative retrospective study. Clin Nephrol. 1991;36:53–9.

    CAS  PubMed  Google Scholar 

  11. Agarwal SK, Dash SC, Tiwari SC, Bhuyan UN. Idiopathic adult focal segmental glomerulosclerosis: a clinicopathological study and response to steroid. Nephron. 1993;63:168–71.

    Article  PubMed  CAS  Google Scholar 

  12. Rydel JJ, Korbet SM, Borok RZ, Schwartz MM. Focal segmental glomerular sclerosis in adults: presentation, course, and response to treatment. Am J Kidney Dis. 1995;25:534–42.

    Article  PubMed  CAS  Google Scholar 

  13. Cattran DC, Appel GB, Hebert LA, Hunsicker LG, Pohl MA, Hoy WE, et al. A randomized trial of cyclosporine in patients with steroid-resistant focal segmental glomerulosclerosis. North America Nephrotic Syndrome Study Group. Kidney Int. 1999;56:2220–6.

    Article  PubMed  CAS  Google Scholar 

  14. Heering P, Braun N, Mullejans R, Ivens K, Zauner I, Funfstuck R, et al. Cyclosporine A and chlorambucil in the treatment of idiopathic focal segmental glomerulosclerosis. Am J Kidney Dis. 2004;43:10–8.

    Article  PubMed  CAS  Google Scholar 

  15. Walker RG, Kincaid-Smith P. The effect of treatment of corticosteroid-resistant idiopathic(primary)focal and segmental hyalinosis and sclerosis(focal glomerulosclerosis)with ciclosporin. Nephron. 1990;54:117–21.

    Article  PubMed  CAS  Google Scholar 

  16. Braun N, Schmutzler F, Lange C, Perna A, Remuzzi G, Risler T, Willis NS. Immunosuppressive treatment for focal segmental glomerulosclerosis in adults. Cochrane Database Syst Rev. 2008;3:CD003233.

    Google Scholar 

Referred guidelines and others

  • a. Sakai H, Kurokawa K, Saito T, Shiiki H, Nishi S, Mitarai T, Yokoyama H, Yoshimura A, Yorioka N. Guideline for treatment of unrefractory nephrotic syndrome in adults. The report from the scientific committee of “Progressive kidney diseases; Specific Diseases Appointed by Ministry of Health, Labour and Welfare, Japan”. Nippon Jinzo Gakkai Shi. 2002;44:751–61

    PubMed  Google Scholar 

Chapter 11: Hypertensive nephrosclerosis References

  1. Agodoa LY, Appel L, Bakris GL, Beck G, Bourgoignie J, Briggs JP, et al. Effect of ramipril vs amlodipine on renal outcomes in hypertensive nephrosclerosis:a randomized controlled trial. JAMA. 2001;285:2719–28.

    Article  PubMed  CAS  Google Scholar 

  2. Wright JT Jr, Bakris G, Greene T, Agodoa LY, Appel LJ, Charleston J, et al. Effect of blood pressure lowering and antihypertensive drug class on progression of hypertensive kidney disease: results from the AASK trial. JAMA. 2002;288:2421–31.

    Article  PubMed  CAS  Google Scholar 

  3. Lea J, Greene T, Hebert L, Lipkowitz M, Massry S, Middleton J, et al. The relationship between magnitude of proteinuria reduction and risk of end–stage renal disease: results of the African American study of kidney disease and hypertension. Arch Int Med. 2005b;165:947–53.

    Article  Google Scholar 

  4. Contreras G, Greene T, Agodoa LY, Cheek D, Junco G, Dowie D, et al. Blood pressure control, drug therapy, and kidney disease. Hypertension. 2005;46:44–50.

    Article  PubMed  CAS  Google Scholar 

  5. Fogo A, Breyer JA, Smith MC, Cleveland WH, Agodoa L, Kirk KA, et al. Accuracy of the diagnosis of hypertensive nephrosclerosis in African Americans: a report from the African American Study of Kidney Disease (AASK) Traial. AASK Pilot Study Investigators. Kidney Int. 1997;51:244–52.

    Article  PubMed  CAS  Google Scholar 

  6. Hannedouche T, Landais P, Goldfarb B, el Esper N, Fournier A, Godin M, et al. Randomised controlled trial of enalapril and beta blockers in non-diabetic chronic renal failure. BMJ. 1994;309:833–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Ibsen H, Olsen MH, Wachtell K, Borch-Johnsen K, Lindholm LH, Mogensen CE, et al. Does albuminuria predict cardiovascular outcomes on treatment with losartan versus atenolol in patients with diabetes, hypertension, and left ventricular hypertrophy? The LIFE study. Diabetes Care. 2006;29:595–600.

    Article  PubMed  CAS  Google Scholar 

  8. Kunz R, Friedrich C, Wolbers M, Mann JF. Meta-analysis: effect of monotherapy and combination therapy with inhibitors of the renin angiotensin system on proteinuria in renal disease. Ann Int Med. 2008;148:30–48.

    Article  PubMed  Google Scholar 

Chapter 12: Atherosclerotic renal artery stenosis References

  1. Vasbinder GB, Nelemans PJ, Kessels AG, Kroon AA, de Leeuw PW, van Engelshoven JM. Diagnostic tests for renal artery stenosis in patients suspected of having renovascular hypertension: a meta-analysis. Ann Int Med. 2001;135:401–11.

    Article  PubMed  CAS  Google Scholar 

  2. Williams GJ, Macaskill P, Chan SF, Karplus TE, Yung W, Hodson EM, et al. Comparative accuracy of renal duplex sonographic parameters in the diagnosis of renal artery stenosis: paired and unpaired analysis. Am J Roentgenol. 2007;188:798–811.

    Article  Google Scholar 

  3. Vasbinder GB, Nelemans PJ, Kessels AG, Kroon AA, Maki JH, Leiner T, Beek FJ, Korst MB, Flobbe K, de Haan MW, van Zwam WH, Postma CT, Hunink MG, de Leeuw PW, van Engelshoven JM;Renal Artery Diagnostic Imaging Study in Hypertension(RADISH)Study Group. Accuracy of computed tomographic angiography and magnetic resonance angiography for diagnosing renal artery stenosis. Ann Int Med. 2004;141:674–82.

  4. Webster J, Marshall F, Abdalla M, Dominiczak A, Edwards R, Isles CG, et al. Randomised comparison of percutaneous angioplasty vs continued medical therapy for hypertensive patients with atheromatous renal artery stenosis. Scottish and Newcastle Renal Artery Stenosis Collaborative Group. J Hum Hypertens. 1998;12:329–35.

    Article  PubMed  CAS  Google Scholar 

  5. Plouin PF, Chatellier G, Darné B, Raynaud A. Blood pressure outcome of angioplasty in atherosclerotic renal artery stenosis: a randomized trial. Essai Multicentrique Medicaments vs. Angioplastie (EMMA) Study Group. Hypertension. 1998;31:823–9.

    Article  PubMed  CAS  Google Scholar 

  6. van Jaarsveld BC, Krijnen P, Pieterman H, Derkx FH, Deinum J, Postma CT, et al. Randomised comparison of percutaneous angioplasty vs. continued medical therapy for hypertensive patients with atheromatous renal artery stenosis. Scottish and Newcastle Renal Artery Stenosis Collaborative Study Group. N Engl J Med. 2000;342:1007–14.

    Article  PubMed  Google Scholar 

  7. Ives NJ, Wheatley K, Stowe RL, Krijnen P, Plouin PF, van Jaarsveld BC, et al. Continuing uncertainty about the value of percutaneous revascularization in atherosclerotic renovascular disease: a meta-analysis of randomized trials. Nephrol Dial Transplant. 2003;18:298–304.

    Article  PubMed  Google Scholar 

  8. Nordmann AJ, Woo K, Parkes R, Logan AG. Balloon angioplasty or medical therapy for hypertensive patients with atherosclerotic renal artery stenosis? A meta-analysis of randomized controlled trials. Am J Med. 2003;114:44–50.

    Article  PubMed  Google Scholar 

  9. Balk E, Raman G, Chung M, Ip S, Tatsioni A, Alonso A, et al. Effectiveness of management strategies for renal artery stenosis: a systematic review. Ann Int Med. 2006;145:901–12.

    Article  PubMed  Google Scholar 

Chapter 13: Autosomal-dominant polycystic kidney disease (ADPKD) References

  1. Sarnak MJ, Greene T, Wang X, Beck G, Kusek JW, Collins AJ, et al. The effect of a lower target blood pressure on the progression of kidney disease: long-term follow-up of the modification of diet in renal disease study. Ann Int Med. 2005;142:342–51.

    Article  PubMed  Google Scholar 

  2. Klahr S, Breyer JA, Beck GJ, Dennis VW, Hartman JA, Roth D, et al. Dietary protein restriction, blood pressure control, and the progression of polycystic kidney disease. Modification of Diet in Renal Disease Study Group. J Am Soc Nephrol. 1995;5:2037–47.

    PubMed  CAS  Google Scholar 

  3. Levey AS, Greene T, Sarnak MJ, Wang X, Beck GJ, Kusek JW, et al. Effect of dietary protein restriction on the progression of kidney disease: long-term follow-up of the Modification of Diet in Renal Disease (MDRD) Study. Am J Kidney Dis. 2006b;48:879–88.

    Article  PubMed  CAS  Google Scholar 

Chapter 14: Management of Dyslipidemia in CKD References

  1. Schaeffner ES, Kurth T, Curhan GC, Glynn RJ, Rexrode KM, Baigent C, et al. Cholesterol and the risk of renal dysfunction in apparently healthy men. J Am Soc Nephrol. 2003;14:2084–91.

    PubMed  CAS  Google Scholar 

  2. Mänttäri M, Tiula E, Alikoski T, Manninen V. Effects of hypertension and dyslipidemia on the decline in renal function. Hypertension. 1995;26:670–5.

    Article  PubMed  Google Scholar 

  3. Mulec H, Johnsen SA, Wiklund O, Björck S. Cholesterol: a renal risk factor in diabetic nephropathy? Am J Kidney Dis. 1993;22:196–201.

    Article  PubMed  CAS  Google Scholar 

  4. Breyer JA, Bain RP, Evans JK, Nahman NS Jr, Lewis EJ, Cooper M, et al. Predictors of the progression of renal insufficiency in patients with insulin-dependent diabetes and overt diabetic nephropathy. The Collaborative Study Group. Kidney Int. 1996;50:1651–8.

    Article  PubMed  CAS  Google Scholar 

  5. Ravid M, Brosh D, Ravid-Safran D, Levy Z, Rachmani R. Main risk factors for nephropathy in type 2 diabetes mellitus are plasma cholesterol levels, mean blood pressure, and hyperglycemia. Arch Int Med. 1998b;158:998–1004.

    Article  CAS  Google Scholar 

  6. Krolewski AS, Warram JH, Christlieb AR. Hypercholesterolemia—a determinant of renal function loss and deaths in IDDM patients with nephropathy. Kidney Int. 1994;45 Suppl:S125–31.

    CAS  Google Scholar 

  7. Appel GB, Radhakrishnan J, Avram MM, DeFronzo RA. Escobar-Jimenez F, Campos MM, Burgess E, Hille DA, Dickson TZ, Shahinfar S, Brenner BM;RENAAL Study. Analysis of metabolic parameters as predictors of risk in the RENAAL study. Diabetes Care. 2003;26:1402–7.

    Article  PubMed  Google Scholar 

  8. Hunsicker LG, Adler S, Caggiula A, England BK, Greene T, Kusek JW, et al. Predictors of the progression of renal disease in the Modification of Diet in Renal Disease Study. Kidney Int. 1997;51:1908–19.

    Article  PubMed  CAS  Google Scholar 

  9. Muntner P, Coresh J, Smith JC, Eckfeldt J, Klag MJ. Plasma lipids and risk of developing renal dysfunction: the atherosclerosis risk in communities study. Kidney Int. 2000;58:293–301.

    Article  PubMed  CAS  Google Scholar 

  10. Hadjadj S, Duly-Bouhanick B, Bekherraz A, BrIdoux F, Gallois Y, Mauco G, et al. Serum triglycerides are a predictive factor for the development and the progression of renal and retinal complications in patients with type 1 diabetes. Diabetes Metab. 2004;30:43–51.

    Article  PubMed  CAS  Google Scholar 

  11. Massy ZA, Nguyen Khoa T, Lacour B, Descamps-Latscha B, Man NK, Jungers P. Dyslipidaemia and the progression of renal disease in chronic renal failure patients. Nephrol Dial Transplant. 1999;14:2392–7.

    Article  PubMed  CAS  Google Scholar 

  12. Muntner P, He J, Astor BC, Folsom AR, Coresh J. Traditional and nontraditional risk factors predict coronary heart disease in chronic kidney disease: results from the atherosclerosis risk in communities study. J Am Soc Nephrol. 2005b;16:529–38.

    Article  PubMed  Google Scholar 

  13. Ordoñez JD, Hiatt RA, Killebrew EJ, Fireman BH. The increased risk of coronary heart disease associated with nephrotic syndrome. Kidney Int. 1993;44:638–42.

    Article  PubMed  Google Scholar 

  14. Tonolo G, Melis MG, Formato M, Angius MF, Carboni A, Brizzi P, et al. Additive effects of Simvastatin beyond its effects on LDL cholesterol in hypertensive type 2 diabetic patients. Eur J Clin Invest. 2000;30:980–7.

    Article  PubMed  CAS  Google Scholar 

  15. Lee TM, Su SF, Tsai CH. Effect of pravastatin on proteinuria in patients with well-controlled hypertension. Hypertension. 2002;40:67–73.

    Article  PubMed  CAS  Google Scholar 

  16. Bianchi S, Bigazzi R, Caiazza A, Campese VM. A controlled, prospective study of the effects of atorvastatin on proteinuria and progression of kidney disease. Am J Kidney Dis. 2003;41:565–70.

    Article  PubMed  CAS  Google Scholar 

  17. Tonelli M, Isles C, Craven T, Tonkin A, Pfeffer MA, Shepherd J, et al. Effect of pravastatin on rate of kidney function loss in people with or at risk for coronary disease. Circulation. 2005;112:171–8.

    Article  PubMed  CAS  Google Scholar 

  18. Fried LF, Orchard TJ, Kasiske BL. Effect of lipid reduction on the progression of renal disease: a meta-analysis. Kidney Int. 2001;59:260–9.

    Article  PubMed  CAS  Google Scholar 

  19. Vidt DG, Cressman MD, Harris S, Pears JS, Hutchinson HG. Rosuvastatin-induced arrest in progression of renal disease. Cardiology. 2004;102:52–60.

    Article  PubMed  CAS  Google Scholar 

  20. Athyros VG, Mikhailidis DP, Papageorgiou AA, Symeonidis AN, Pehlivanidis AN, Bouloukos VI, et al. The effect of statins versus untreated dyslipidaemia on renal function in patients with coronary heart disease. A subgroup analysis of the Greek atorvastatin and coronary heart disease evaluation(GREACE)study. J Clin Pathol. 2004;57:728–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Vidt DG, Harris S, McTaggart F, Ditmarsch M, Sager PT, Sorof JM. Effect of short-term rosuvastatin treatment on estimated glomerular filtration rate. Am J Cardiol. 2006;97:1602–6.

    Article  PubMed  CAS  Google Scholar 

  22. Tonelli M, Moyé L, Sacks FM, Cole T, Curhan GC, Cholesterol and Recurrent Events Trial Investigators. Effect of pravastatin on loss of renal function in people with moderate chronic renal insufficiency and cardiovascular disease. J Am Soc Nephrol. 2003;14:1605–13.

    Article  PubMed  CAS  Google Scholar 

  23. Tonelli M, Isles C, Curhan GC, Tonkin A, Pfeffer MA, Shepherd J, et al. Effect of pravastatin on cardiovascular events in people with chronic kidney disease. Circulation. 2004;110:1557–63.

    Article  PubMed  CAS  Google Scholar 

  24. Tonelli M, Keech A, Shepherd J, Sacks F, Tonkin A, Packard C, et al. Effect of pravastatin in people with diabetes and chronic kidney disease. J Am Soc Nephrol. 2005;16:3748–54.

    Article  PubMed  CAS  Google Scholar 

  25. Tonelli M, Moyé L, Sacks FM, Kiberd B, Curhan G, Cholesterol and Recurrent Events (CARE) Trial Investigators. Pravastatin for secondary prevention of cardiovascular events in persons with mild chronic renal insufficiency. Ann Int Med. 2003;138:98–104.

    Article  PubMed  CAS  Google Scholar 

  26. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet. 2002;360:7–22.

    Article  Google Scholar 

  27. Sever PS, Dahlöf B, Poulter NR, Wedel H, Beevers G, Caulfield M, ASCOT investigators, et al. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial–Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial. Lancet. 2003;361:1149–58.

Chapter 15: Obesity and Metabolic syndrome References

  1. Ramirez SP, McClellan W, Port FK, Hsu SIH. Risk factors for proteinuria in a large, multiracial, Southeast Asian population. J Am Soc Nephrol. 2002;13:1907–17.

    Article  PubMed  Google Scholar 

  2. Tozawa M, Iseki K, Iseki C, Oshiro S, Ikemiya Y, Takishita S. Influence of smoking and obesity on the development of proteinuria. Kidney Int. 2002;62:956–62.

    Article  PubMed  Google Scholar 

  3. Fox CS, Larson MG, Leip EP, Culleton B, Wilson PW, Levy D. Predictors of new-onset kidney disease in a community-based population. JAMA. 2004;291:844–50.

    Article  PubMed  CAS  Google Scholar 

  4. Kramer H, Luke A, Bidani A, Cao G, Cooper R, McGee D. Obesity and prevalent and incident CDK: the Hypertension Detection and Follow-Up Program. Am J Kidney Dis. 2005;46:587–94.

    Article  PubMed  Google Scholar 

  5. Gelber RP, Kurth T, Kausz AT, Manson JE, Buring JE, Levey AS, et al. Association between body mass index and CKD in apparently healthy men. Am J Kidney Dis. 2005;46:871–80.

    Article  PubMed  Google Scholar 

  6. Hallan S, de Mutsert R, Carlsen S, Dekker FW, Aasarod K, Holmen J. Obesity, smokimg, and physical inactivity as risk factors for CKD: are men more vulnerable ? Am J Kidney Dis. 2006;47:396–405.

    Article  PubMed  Google Scholar 

  7. Yamagata K, Ishida K, Sairenchi T, Takahashi H, Ohba S, Shiigai T, et al. Risk factors for chronic kidney disease in a community-based population: a 10-year follow-up study. Kidney Int. 2007;71:159–66.

    Article  PubMed  CAS  Google Scholar 

  8. Hsu CY, McCulloch CE, Iribarren C, Darbinian J, Go AS. Body mass index and risk for end-stage renal disease. Ann Int Med. 2006;144:21–8.

    Article  PubMed  Google Scholar 

  9. Iseki K, Ikemiya K, Kinjo K, Inoue T, Iseki C, Takishita S. Body mass index and the risk of development of end-stage renal disease in a screened cohort. Kidney Int. 2004;65:1870–6.

    Article  PubMed  Google Scholar 

  10. Ejerblad E, Fored CM, Lindblad P, Fryzek J, McLaughlin JK, Nyrén O. Obesity and risk for chronic renal failure. J Am Soc Nephrol. 2006;17:1695–702.

    Article  PubMed  CAS  Google Scholar 

  11. Speckman RA, McClellan WM, Volkova NV, Jurkovitz CT, Satko SG, Schoolwerth AC, et al. Obesity is associated with family history of ESRD in incident dialysis patients. Am J Kidney Dis. 2006;48:50–8.

    Article  PubMed  Google Scholar 

  12. Bonnet F, Deprele C, Sassolas A, Moulin P, Alamartine E, Berthezene F, et al. Excessive body weight as a new independent risk factor for clinical and pathological progression in primary IgA nephritis. Am J Kidney Dis. 2001;37:720–7.

    Article  PubMed  CAS  Google Scholar 

  13. Praga M, Hernandez E, Herrero JC, Morales E, Revilla Y, Diaz-Gonzalez R, et al. Influence of obesity on the appearance of proteinuria and renal insufficiency after unilateral nephrectomy. Kidney Int. 2000;58:2111–8.

    Article  PubMed  CAS  Google Scholar 

  14. Gonzalez E, Gutierrez E, Morales E, Hernandez E, Andres A, Bello I, et al. Factors influencing the progression of renal damage in patients with unilateral renal agenesis and remnant kidney. Kidney Int. 2005;68:263–70.

    Article  PubMed  Google Scholar 

  15. Pinto-Sietsma SJ, Navis G, Janssen WM, de Zeeuw D, Gans RO, de Jong PE, et al. A central body fat distribution is related to renal function impairment, even in lean subjects. Am J Kidney Dis. 2003;41:733–41.

    Article  PubMed  Google Scholar 

  16. Bonnet F, Marre M, Halimi JM, Stengel B, Lange C, Laville M, et al. DESIR Study. Weight circumference and the metabolic syndrome predict the development of elevated albuminuria in non-diabetic subjects: the DESIR Study. J Hypertens. 2006;24:1157–63.

    Article  PubMed  CAS  Google Scholar 

  17. de Boer IH, Sibley SD, Kestenbaum B, Sampson JN, Young B, Cleary PA, et al. Central obesity, incident microalbuminuria, and change in creatinine clearance in the epidemiology of diabetes interventions and complications study. J Am Soc Nephrol. 2007;18:235–43.

    Article  PubMed  CAS  Google Scholar 

  18. Leoncini G, Ratto E, Viazzi F, Vaccaro V, Parodi D, Parodi A, et al. Metabolic syndrome is associated with early signs of organ damage in nondiabetic, hypertensive patients. J Int Med. 2005;257:454–60.

    Article  CAS  Google Scholar 

  19. Mulé G, Nardi E, Cottone S, Cusimano P, Volpe V, Piazza G, et al. Influence of metabolic syndrome on hypertension-related target organ damage. J Int Med. 2005;257:503–13.

    Article  Google Scholar 

  20. Chen J, Muntner P, Hamm LL, Jones DW, Batuman V, Fonseca V, et al. The metabolic syndrome and chronic kidney disease in U.S. adults. Ann Int Med. 2004;140:167–74.

    Article  PubMed  Google Scholar 

  21. Kurella M, Lo CJ, Chertow GM. Metabolic syndrome and the risk for chronic kidney disease among nondiabetic adults. J Am Soc Nephrol. 2005;16:2134–40.

    Article  PubMed  Google Scholar 

  22. Tanaka H, Shiohira Y, Uezu Y, Higa A, Iseki K. Metabolic syndrome and chronic kidney disease in Okinawa, Japan. Kidney Int. 2006;69:369–74.

    Article  PubMed  CAS  Google Scholar 

  23. Ninomiya T, Kiyohara Y, Kubo M, Yonemoto K, Tanizaki Y, Doi Y, et al. Metabolic syndrome and CKD in a general Japanese population: The Hisayama Study. Am J Kidney Dis. 2006;48:383–91.

    Article  PubMed  Google Scholar 

  24. Miyatake N, Wada J, Kawasaki Y, Matsumoto S, Makino H, Numata T. Relationship between metabolic syndrome and proteinuria in the Japanese population. Int Med. 2006;45:599–603.

    Article  Google Scholar 

  25. Iseki K, Kohagura K, Sakime A, Iseki C, Kinjo K, Ikemiya Y, et al. Changes in the demographics and prevalence of chronic kidney disease in Okinawa, Japan (1993 to 2003). Hypertens Res. 2007;30:55–62.

    Article  PubMed  CAS  Google Scholar 

  26. Tsuda S, Nakano S, Konishi K, Koya D. A lack of increase in high molecular weight-adiponectin in macroalbuminuric subjects with metabolic syndrome may exert renal and atherosclerotic risks. Diabetes Res Clin Pract. 2008;79:503–9.

    Article  PubMed  CAS  Google Scholar 

  27. Chen J, Gu D, Chen CS, Wu X, Hamm LL, Muntner P, et al. Association between the metabolic syndrome and chronic kidney disease in Chinese adults. Nephrol Dial Transplant. 2007;22:1100–6.

    Article  PubMed  CAS  Google Scholar 

  28. Kitiyakara C, Yamwong S, Cheepudomwit S, Domrongkitchaiporn S, Unkurapinun N, Pakpeankitvatana V, et al. The metabolic syndrome and chronic kidney disease in a Southeast Asian cohort. Kidney Int. 2007;71:693–700.

    Article  PubMed  CAS  Google Scholar 

  29. Thorn LM, Forsblom C, Fagerudd J, Thomas MC, Pettersson-Fernholm K, Saraheimo M, et al. Metabolic syndrome in type 1 diabetes: association with diabetic nephropathy and glycemic control(the FinnDiane study). Diabetes Care. 2005;28:2019–24.

    Article  PubMed  Google Scholar 

  30. Rashidi A, Ghanbarian A, Azizi F. Are patients who have metabolic syndrome without diabetes at risk for developing chronic kidney disease? Evidence based on data from a large cohort screening population. Clin J Am Soc Nephrol. 2007;2:976–83.

    Article  PubMed  CAS  Google Scholar 

  31. Morales E, Valero A, Leon M, Hernandez E, Praga M. Beneficial effects of weight loss in overweight patients with chronic proteinuric nephropathies. Am J Kidney Dis. 2003;41:319–27.

    Article  PubMed  Google Scholar 

  32. Saiki A, Nagayama D, Ohhira M, Endoh K, Ohtsuka M, Koide N, et al. Effect of weight loss using formula diet on renal function in obese patients with diabetic nephropathy. Int J Obes. 2005;29:1115–20.

    Article  CAS  Google Scholar 

  33. Bello AK, de Zeeuw D, El Nahas M, Brantsma AH, Bakke SJ, de Jong PE, et al. Impact of weight change on albuminuria in the general population. Nephrol Dial Transplant. 2007;22:1619–27.

    Article  PubMed  CAS  Google Scholar 

  34. AHEAD The Look Research Group. Reduction in weight and cardiovascular risk factors in individuals with type 2 diabetes. One-year results of the Look AHEAD trial. Diabetes Care. 2007;30:1373–83.

    Article  Google Scholar 

16. Diagnosis of CKD in childhood References

  1. Hogg RJ, Furth S, Lemley KV, Portman R, Schwartz GJ, Coresh J, et al. National Kidney Foundation’s Kidney Disease Outcomes Quality Initiative. National Kidney Foundation’s Kidney Disease Outcomes Quality Initiative clinical practice guidelines for chronic kidney disease in children and adolescents: evaluation, classification, and stratification. Pediatrics. 2003;111:1416–21.

    Article  PubMed  Google Scholar 

  2. Heilbron DC, Holliday MA, al-Dahwi A, Kogan BA. Expressing glomerular filtration rate in children. Pediatr Nephrol. 1991;5:5–11.

    Article  PubMed  CAS  Google Scholar 

  3. Schwartz GJ, Furth SL. Glomerular filtration rate measurement and estimation in chronic kidney disease. Pediatr Nephrol. 2007;22:1839–48.

    Article  PubMed  Google Scholar 

  4. Kojima Y. Creatinine; serum standard values in Japanese children, In: Nihon Koshueisei Kyokai, ed by Study Group of children’s physiological values, 1996;137–40

  5. Nishida T, Hayashi Y, Nakamura Y. Differences in clinical reference values between different ages and sexes. Rinsho Byori. 1984;32:1263–70.

    PubMed  CAS  Google Scholar 

  6. Schwartz GJ, Haycock GB, Edelmann CM Jr, Spitzer A. A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics. 1976;58:259–63.

    PubMed  CAS  Google Scholar 

  7. Schwartz GJ, Brion LP, Spitzer A. The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children, and adolescents. Pediatr Clin North Am. 1987;34:571–90.

    Article  PubMed  CAS  Google Scholar 

  8. Warady BA, Chadha V. Chronic kidney disease in children: the global perspective. Pediatr Nephrol. 2007;22:1999–2009.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ardissino G, Daccò V, Testa S, Bonaudo R, Claris-Appiani A, Taioli E, et al. Epidemiology of chronic renal failure in children: data from the ItalKid project. Pediatrics. 2003;111:e382–7.

    Article  PubMed  Google Scholar 

  10. Hattori S, Yosioka K, Honda M, Ito H, Japanese Society for Pediatric Nephrology. The 1998 report of the Japanese National Registry data on pediatric end-stage renal disease patients. Pediatr Nephrol. 2002;17:456–61.

    Article  PubMed  Google Scholar 

  11. Wong H, Mylrea K, Feber J, Drukker A, Filler G. Prevalence of complications in children with chronic kidney disease according to KDOQI. Kidney Int. 2006;70:585–90.

    Article  PubMed  CAS  Google Scholar 

  12. Hattori S. Epidemiologic survey of renal failure in children. Rinsho Toseki. 2005;21:1315–22.

    Google Scholar 

  13. Udagawa J, Kurayama H, Matsumuta C, Akikusa B. Preventive effect of school urine screening test on development of renal failure. Jpn J Pediatr Nephrol. 2000;13:113–7.

    Google Scholar 

  14. Murakami M. School urine analysis as a method for mass screening. Shouni Hoken Kenkyu. 2004;63:365–70.

    Google Scholar 

  15. Houser M. Assessment of proteinuria using random urine samples. J Pediatr. 1984;104:845–8.

    Article  PubMed  CAS  Google Scholar 

  16. Yoshimoto M, Tsukahara H, Saito M, Hayashi S, Haruki S, Fujisawa S, et al. Evaluation of variability of proteinuria indices. Pediatr Nephrol. 1990;4:136–9.

    Article  PubMed  CAS  Google Scholar 

  17. Abitbol C, Zilleruelo G, Freundlich M, Strauss J. Quantitation of proteinuria with urinary protein/creatinine ratios and random testing with dipsticks in nephrotic children. J Pediatr. 1990;116:243–7.

    Article  PubMed  CAS  Google Scholar 

  18. Rytand DA, Spreiter S. Prognosis in postural (orthostatic) proteinuria: forty to fifty-year follow-up of six patients after diagnosis by Thomas Addis. N Engl J Med. 1981;305:618.

    Article  PubMed  CAS  Google Scholar 

  19. de Bruyn R, Gordon I. Postnatal investigation of fetal renal disease. Prenat Diagn. 2001;21:984–91.

    Article  PubMed  Google Scholar 

  20. Shishido S, Aikawa A, Ooshima S, Hasegawa A, Hattori M, Yoshimura R. Present status and long term outcome of renal transplantation in children. Nihon Ishoku Gakkaishi. 2007;42:347–53.

    Google Scholar 

  21. McDonald SP, Craig JC, Australian and New Zealand Paediatric Nephrology Association. Long-term survival of children with end-stage renal disease. N Engl J Med. 2004;350:2654–62.

    Article  PubMed  CAS  Google Scholar 

  22. Groothoff JW, Gruppen MP, Offringa M, Hutten J, Lilien MR, Van De Kar NJ, et al. Mortality and causes of death of end-stage renal disease in children: a Dutch cohort study. Kidney Int. 2002;61:621–9.

    Article  PubMed  Google Scholar 

  23. Parekh RS, Carroll CE, Wolfe RA, Port FK. Cardiovascular mortality in children and young adults with end-stage kidney disease. J Pediatr. 2002;141:191–7.

    Article  PubMed  CAS  Google Scholar 

  24. Seikaly MG, Salhab N, Gipson D, Yiu V, Stablein D. Stature in children with chronic kidney disease: analysis of NAPRTCS database. Pediatr Nephrol. 2006;21:793–9.

    Article  PubMed  Google Scholar 

  25. Wada N. Long term prognosis of growth failure in patients with peritoneal dialysis who do not use gwoth hormone. Shoni PD Kenkyukaishi. 2000;13:32–5.

    Google Scholar 

  26. Yata N, Nakanishi K, Shima Y, Togawa H, Obana M, Sako M, et al. Improved renal survival in Japanese children with IgA nephropathy. Pediatr Nephrol. 2008;23:905–12.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wyatt RJ, Kritchevsky SB, Woodford SY, Miller PM, Roy S 3rd, Holland NH, et al. IgA nephropathy: long-term prognosis for pediatric patients. J Pediatr. 1995;127:913–9.

    Article  PubMed  CAS  Google Scholar 

  28. Hogg RJ, Silva FG, Wyatt RJ, Reisch JS, Argyle JC, Savino D. Prognostic indicators in children with IgA nephropathy—report of the Southwest Pediatric Nephrology Study Group. Pediatr Nephrol. 1994;8:15–20.

    Article  PubMed  CAS  Google Scholar 

  29. Yoshikawa N, Ito H, Nakamura H. Prognostic indicators in childhood IgA nephropathy. Nephron. 1992;60:60–7.

    Article  PubMed  CAS  Google Scholar 

  30. Hisano S, Kawano M, Kaku Y, Yamane I, Hatae K, Uragoh K, et al. The natural history of screening detected IgA glomerulonephritis in children. Acta Paediatr Scand. 1991;80:1044–50.

    Article  PubMed  CAS  Google Scholar 

  31. Hattori S, Karashima S, Furuse A, Terashima T, Hiramatsu M, Murakami M, et al. Clinicopathological correlation of IgA nephropathy in children. Am J Nephrol. 1985;5:182–9.

    Article  PubMed  CAS  Google Scholar 

  32. Coppo R, Andrulli S, Amore A, Gianoglio B, Conti G, Peruzzi L, et al. Predictors of outcome in Henoch-Schönlein nephritis in children and adults. Am J Kidney Dis. 2006;47:993–1003.

    Article  PubMed  Google Scholar 

  33. Goldstein AR, White RH, Akuse R, Chantler C. Long-term follow-up of childhood Henoch-Schönlein nephritis. Lancet. 1992;339(8788):280–2.

    Article  PubMed  CAS  Google Scholar 

  34. Emre S, Bilge I, Sirin A, Kilicaslan I, Nayir A, Oktem F, et al. Lupus nephritis in children: prognostic significance of clinicopathological findings. Nephron. 2001;87:118–26.

    Article  PubMed  CAS  Google Scholar 

  35. Bogdanović R, Nikolicć V, Pasić S, Dimitrijevié J, Lipkovska-Marković J, Erić-Marinković J, et al. Lupus nephritis in childhood: a review of 53 patients followed at a single center. Pediatr Nephrol. 2004;19:36–44.

    Article  PubMed  Google Scholar 

  36. White RH, Raafat F, Milford DV, Komianou F, Moghal NE. The Alport nephropathy: clinicopathological correlations. Pediatr Nephrol. 2005;20:897–903.

    Article  PubMed  Google Scholar 

  37. Jais JP, Knebelmann B, Giatras I, De Marchi M, Rizzoni G, Renieri A, et al. X-linked Alport syndrome: natural history and genotype–phenotype correlations in girls and women belonging to 195 families: a “European Community Alport Syndrome Concerted Action” study. J Am Soc Nephrol. 2003;14:2603–10.

    Article  PubMed  Google Scholar 

  38. Peña A, Bravo J, Melgosa M, Fernandez C, Meseguer C, Espinosa L, et al. Steroid-resistant nephrotic syndrome: long-term evolution after sequential therapy. Pediatr Nephrol. 2007;22:1875–80.

    Article  PubMed  Google Scholar 

  39. Roth KS, Carter WH Jr, Chan JC. Obstructive nephropathy in children: long-term progression after relief of posterior urethral valve. Pediatrics. 2001;107:1004–10.

    Article  PubMed  CAS  Google Scholar 

  40. Ismaili K, Schurmans T, Wissing KM, Hall M, Van Aelst C, Janssen F. Early prognostic factors of infants with chronic renal failure caused by renal dysplasia. Pediatr Nephrol. 2001;16:260–4.

    Article  PubMed  CAS  Google Scholar 

  41. Van Dyck M, Bilem N, Proesmans W. Conservative treatment for chronic renal failure from birth: a 3-year follow-up study. Pediatr Nephrol. 1999;13:865–9.

    Article  PubMed  Google Scholar 

  42. Oliveira EA, Diniz JS, Cabral AC, Leite HV, Colosimo EA, Oliveira RB, et al. Prognostic factors in fetal hydronephrosis: a multivariate analysis. Pediatr Nephrol. 1999;13:859–64.

    Article  PubMed  CAS  Google Scholar 

Referred guidelines and others

  • a. Keane WF, Eknoyan G. Proteinuria, albuminuria, risk, assessment, detection, elimination (PARADE): a position paper of the National Kidney Foundation. Am J Kidney Dis. 1999;33:1004–1010.

  • b. Hogg RJ, Portmann RJ, Milliner D, Lemley KV, Eddy A, Ingelfinger J. Evaluation and management of proteinuria and nephrotic syndrome in children:Recommendations from a pediatric nephrology panel established at the National Kidney Foundation Conference on Proteinuria, Risk, Assessment, Detection, Elimination (PARADE). Pediatrics. 2000;105:1242–9.

    Article  PubMed  CAS  Google Scholar 

  • c. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002;39 (2 Suppl 1):S1–266.

    Google Scholar 

  • d. Clinical Practice Guidebook for Diagnosis and Treatment of Chronic Kidney Disease. ed by Japanese Society of Nephrology; 2007

  • e. Guideline for renal function (GFR) and measument of urinary protein. ed by Japanese Society of Nephrology; 2007

  • f. Treatment guidelines for the idiopathic nephrotic syndrome in children (ver. 1). ed by Japanese Society for Pediatric Nephrology, Committee for Development of Guidelines for Drug Therapy for Nephrotic Syndrome in Children. https://doi.org/www.jspn.jp/ J Jpn Pediatr Soc. 2005;109:1066–75. Nippon Jinzo Gakkai Shi. 2005;47:790–803. Jpn J Pediatr Nephrol. 2005;18:170–81.

    Google Scholar 

  • g. Guidelines for diagnosis of hematuria. Commitee for Diagnostic Guidelines of Hematuria. Nippon Jinzo Gakkai Shi. 2006;48 Suppl:1–34. Jpn J Urol. 2006;97 Suppl:1–35.

    Google Scholar 

  • h. Guidebook of the renal biopsy. ed by Japanese Society of Nephrology; 2004

17. Management of CKD in children References

  1. Hattori S, Yoshikawa N, Ichikawa I, Honda M, Igarashi T. The 2003 report of the national registry data on pediatric end-stage renal disease patients. Jpn J Pediatr Noephrol. 2004;17:121–30.

    Google Scholar 

  2. Seikaly MG, Ho PL, Emmett L, Fine RN, Tejani A. Chronic renal insufficiency in children: the 2001 Annual Report of the NAPRTCS. Pediatr Nephrol. 2003;18:796–804.

    Article  PubMed  Google Scholar 

  3. Allen C, Glasziou P, Del Mar C. Bed rest: a potentially harmful treatment needing more careful evaluation. Lancet. 1999;354:1229–33.

    Article  PubMed  CAS  Google Scholar 

  4. Weiss R, Dziura J, Burgert TS, Tamborlane WV, Taksali SE, Yeckel CW, et al. Obesity and the metabolic syndrome in children and adolescents. N Engl J Med. 2004;350:2362–74.

    Article  PubMed  CAS  Google Scholar 

  5. Muntner P, He J, Cutler JA, Wildman RP, Whelton PK. Trends in blood pressure among children and adolescents. JAMA. 2004;291:2107–13.

    Article  PubMed  CAS  Google Scholar 

  6. Savoye M, Shaw M, Dziura J, Tamborlane WV, Rose P, Guandalini C, et al. Effects of a weight management program on body composition and metabolic parameters in overweight children: a randomized controlled trial. JAMA. 2007;297:2697–704.

    Article  PubMed  CAS  Google Scholar 

  7. Karlberg J, Schaefer F, Hennicke M, Wingen AM, Rigden S, Mehls O. Early age-dependent growth impairment in chronic renal failure. European Study Group for Nutritional Treatment of Chronic Renal Failure in Childhood. Pediatr Nephrol. 1996;10:283–7.

    Article  PubMed  CAS  Google Scholar 

  8. Arnold WC, Danford D, Holliday MA. Effects of caloric supplementation on growth in children with uremia. Kidney Int. 1983;24:205–9.

    Article  PubMed  CAS  Google Scholar 

  9. Kari JA, Gonzalez C, Ledermann SE, Shaw V, Rees L. Outcome and growth of infants with severe chronic renal failure. Kidney Int. 2000;57:1681–7.

    Article  PubMed  CAS  Google Scholar 

  10. Chaturvedi S, Jones C. Protein restriction for children with chronic renal failure. Cochrane Database Systematic Rev. 2007 Issue 4

  11. Geleijnse JM, Hofman A, Witteman JC, Hazebroek AA, Valkenburg HA, Grobbee DE. Long-term effects of neonatal sodium restriction on blood pressure. Hypertension. 1997;29:913–7.

    Article  PubMed  CAS  Google Scholar 

  12. Kouda K, Nakamura H, Tokunaga R, Takeuchi H. Trends in levels of cholesterol in Japanese children from 1993 through 2001. J Epidemiol. 2004;14:78–82.

    Article  PubMed  Google Scholar 

  13. Neu AM, Warady BA, Furth SL, Lederman HM, Fivush BA. Antibody levels to diphtheria, tetanus, and rubella in infants vaccinated while on PD: a Study of the Pediatric Peritoneal Dialysis Study Consortium. Adv Perit Dial. 1997;13:297–9.

    PubMed  CAS  Google Scholar 

  14. Furth SL, Neu AM, McColley SA, Case B, Steinhoff M, Fivush B. Immune response to influenza vaccination in children with renal disease. Pediatr Nephrol. 1995;9:566–8.

    Article  PubMed  CAS  Google Scholar 

  15. Furth SL, Arbus GS, Hogg R, Tarver J, Chan C, Fivush BA, et al. Varicella vaccination in children with nephrotic syndrome: a report of the Southwest Pediatric Nephrology Study Group. J Pediatr. 2003;142:145–8.

    Article  PubMed  Google Scholar 

  16. Furth SL, Neu AM, Sullivan EK, Gensler G, Tejani A, Fivush BA. Immunization practices in children with renal disease: a report of the North American Pediatric Renal Transplant Cooperative Study. Pediatr Nephrol. 1997;11:443–6.

    Article  PubMed  CAS  Google Scholar 

  17. Zamora I, Simon JM, Da Silva ME, Piqueras AI. Attenuated varicella virus vaccine in children with renal transplants. Pediatr Nephrol. 1994;8:190–2.

    Article  PubMed  CAS  Google Scholar 

  18. National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics. 2004;114 Suppl 4:555–76.

    Article  Google Scholar 

  19. Tomizawa S, Uchiyama M, Kurayama A, Takahashi S, Suhara Y, Kadowaki J, et al. Dose study of long-active Nifedipine (Sepamit-R) in pediatric hypertension associated with kidney diseases. Shounika Rinsyo. 1996;59:303–10.

    Google Scholar 

  20. Flynn JT, Newburger JW, Daniels SR, Sanders SP, Portman RJ, Hogg RJ, et al. A randomized, placebo-controlled trial of amlodipine in children with hypertension. J Pediatr. 2004;145:353–9.

    Article  PubMed  CAS  Google Scholar 

  21. Wells T, Frame V, Soffer B, Shaw W, Zhang Z, Herrera P, et al. A double-blind, placebo-controlled, dose–response study of the effectiveness and safety of enalapril for children with hypertension. J Clin Pharmacol. 2002;42:870–80.

    Article  PubMed  CAS  Google Scholar 

  22. Soffer B, Zhang Z, Miller K, Vogt BA, Shahinfar S. A double-blind, placebo-controlled, dose–response study of the effectiveness and safety of lisinopril for children with hypertension. Am J Hypertens. 2003;16:795–800.

    Article  PubMed  CAS  Google Scholar 

  23. Shahinfar S, Cano F, Soffer BA, Ahmed T, Santoro EP, Zhang Z, et al. A double-blind, dose–response study of losartan in hypertensive children. Am J Hypertens. 2005;18:183–90.

    Article  PubMed  CAS  Google Scholar 

  24. Norman ME, Mazur AT, Borden S 4th, Gruskin A, Anast C, Baron R, et al. Early diagnosis of juvenile renal osteodystrophy. J Pediatr. 1980;97:226–32.

    Article  PubMed  CAS  Google Scholar 

  25. Brodehl J, Gellissen K, Weber HP. Postnatal development of tubular phosphate reabsorption. Clin Nephrol. 1982;17:163–71.

    PubMed  CAS  Google Scholar 

  26. Salusky IB, Ramirez JA, Oppenheim W, Gales B, Segre GV, Goodman WG. Biochemical markers of renal osteodystrophy in pediatric patients undergoing CAPD/CCPD. Kidney Int. 1994;45:253–8.

    Article  PubMed  CAS  Google Scholar 

  27. Boehm M, Riesenhuber A, Winkelmayer WC, Arbeiter K, Mueller T, Aufricht C. Early erythropoietin therapy is associated with improved growth in children with chronic kidney disease. Pediatr Nephrol. 2007;22:1189–93.

    Article  PubMed  Google Scholar 

  28. Fadrowski JJ, Pierce CB, Cole SR, Moxey-Mims M, Warady BA, Furth SL. Hemoglobin decline in children with chronic kidney disease: baseline results from the chronic kidney disease in children prospective cohort study. Clin J Am Soc Nephrol. 2008;3:457–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Schärer K, Klare B, Braun A, Dressel P, Gretz N. Treatment of renal anemia by subcutaneous erythropoietin in children with preterminal chronic renal failure. Acta Paediatr. 1993;82:953–8.

    Article  PubMed  Google Scholar 

  30. Van Damme-Lombaerts R, Broyer M, Businger J, Baldauf C, Stocker H. A study of recombinant human erythropoietin in the treatment of anaemia of chronic renal failure in children on haemodialysis. Pediatr Nephrol. 1994;8:338–42.

    Article  PubMed  Google Scholar 

  31. Frankenfield DL, Neu AM, Warady BA, Fivush BA, Johnson CA, Brem AS. Anemia in pediatric hemodialysis patients: results from the 2001 ESRD Clinical Performance Measures Project. Kidney Int. 2003;64:1120–4.

    Article  PubMed  Google Scholar 

  32. Burke JR. Low-dose subcutaneous recombinant erythropoietin in children with chronic renal failure. Australian and New Zealand Paediatric Nephrology Association. Pediatr Nephrol. 1995;9:558–61.

    Article  PubMed  CAS  Google Scholar 

  33. Mitsnefes MM, Daniels SR, Schwartz SM, Meyer RA, Khoury P, Strife CF. Severe left ventricular hypertrophy in pediatric dialysis: prevalence and predictors. Pediatr Nephrol. 2000;14:898–902.

    Article  PubMed  CAS  Google Scholar 

  34. Warady BA, Ho M. Morbidity and mortality in children with anemia at initiation of dialysis. Pediatr Nephrol. 2003;18:1055–62.

    Article  PubMed  Google Scholar 

  35. Vimalachandra D, Hodson EM, Willis NS, Craig JC, Cowell C, Knight JF. Growth hormone for children with chronic kidney disease. Cochrane Database Systematic Rev. 2007 Issue 4

  36. Haffner D, Wuhl E, Schaefer F, Nissel R, Tonshoff B, Mehls O. Factors predictive of the short- and long-term efficacy of growth hormone treatment in prepubertal children with chronic renal failure. The German Study Group for Growth Hormone Treatment in Chronic Renal Failure. J Am Soc Nephrol. 1998;9:1899–907.

    PubMed  CAS  Google Scholar 

  37. Seikaly MG, Salhab N, Warady BA, Stablein D. Use of rhGH in children with chronic kidney disease: lessons from NAPRTCS. Pediatr Nephrol. 2007;22:1195–204.

    Article  PubMed  Google Scholar 

  38. The primary nephrotic syndrome in children. Identification of patients with minimal change nephrotic syndrome from initial response to prednisone. A report of the International Study of Kidney Disease in Children. J Pediatr. 1981;98:561–4.

    Article  Google Scholar 

  39. Tarshish P, Tobin JN, Bernstein J, Edelmann CM Jr. Prognostic significance of the early course of minimal change nephrotic syndrome: report of the International Study of Kidney Disease in Children. J Am Soc Nephrol. 1997;8:769–76.

    PubMed  CAS  Google Scholar 

  40. Alternate-day versus intermittent prednisone in frequently relapsing nephrotic syndrome. A report of “Arbeitsgemeinschaft für Pädiatrische Nephrologie”. Lancet. 1979;1:401–3.

  41. Ueda N, Chihara M, Kawaguchi S, Niinomi Y, Nonoda T, Matsumoto J, et al. Intermittent versus long-term tapering prednisolone for initial therapy in children with idiopathic nephrotic syndrome. J Pediatr. 1988;112:122–6.

    Article  PubMed  CAS  Google Scholar 

  42. Ehrich JH, Brodehl J. Long versus standard prednisone therapy for initial treatment of idiopathic nephrotic syndrome in children. Arbeitsgemeinschaft für Pädiatrische Nephrologie. Eur J Pediatr. 1993;152:357–61.

    Article  PubMed  CAS  Google Scholar 

  43. Hiraoka M, Tsukahara H, Matsubara K, Tsurusawa M, Takeda N, Haruki S, et al. A randomized study of two long-course prednisolone regimens for nephrotic syndrome in children. Am J Kidney Dis. 2003;41:1155–62.

    Article  PubMed  CAS  Google Scholar 

  44. Mori K, Honda M, Ikeda M. Efficacy of methylprednisolone pulse therapy in steroid-resistant nephrotic syndrome. Pediatr Nephrol. 2004;19:1232–6.

    Article  PubMed  Google Scholar 

  45. Ehrich JH, Geerlings C, Zivicnjak M, Franke D, Geerlings H, Gellermann J. Steroid-resistant idiopathic childhood nephrosis: overdiagnosed and undertreated. Nephrol Dial Transplant. 2007;22:2183–93.

    Article  PubMed  Google Scholar 

  46. Yata N, Nakanishi K, Shima Y, Togawa H, Obana M, Sako M, et al. Improved renal survival in Japanese children with IgA nephropathy. Pediatr Nephrol. 2008b;23:905–12.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ellis D, Vats A, Moritz ML, Reitz S, Grosso MJ, Janosky JE. Long-term antiproteinuric and renoprotective efficacy and safety of losartan in children with proteinuria. J Pediatr. 2003;143:89–97.

    Article  PubMed  CAS  Google Scholar 

  48. Bhattacharjee R, Filler G. Additive antiproteinuric effect of ACE inhibitor and losartan in IgA nephropathy. Pediatr Nephrol. 2002;17:302–4.

    Article  PubMed  Google Scholar 

  49. Yang Y, Ohta K, Shimizu M, Nakai A, Kasahara Y, Yachie A, et al. Treatment with low-dose angiotensin-converting enzyme inhibitor (ACEI) plus angiotensin II receptor blocker (ARB) in pediatric patients with IgA nephropathy. Clin Nephrol. 2005;64:35–40.

    Article  PubMed  CAS  Google Scholar 

  50. Yoshikawa N, Ito H, Sakai T, Takekoshi Y, Honda M, Awazu M, et al. A controlled trial of combined therapy for newly diagnosed severe childhood IgA nephropathy. Japanese Pediatric IgA Nephropathy Treatment Study Group. J Am Soc Nephrol. 1999;10:101–9.

    PubMed  CAS  Google Scholar 

  51. Yoshikawa N, Honda M, Iijima K, Awazu M, Hattori S, Nakanishi K, et al. Steroid treatment for severe childhood IgA nephropathy: a randomized, controlled trial. Clin J Am Soc Nephrol. 2006;1:511–7.

    Article  PubMed  CAS  Google Scholar 

  52. Yoshikawa N, Nakanishi K, Ishikura K, Hataya H, Iijima K, Honda M. Combination therapy with mizoribine for severe childhood IgA nephropathy: a pilot study. Pediatr Nephrol. 2008;23:757–63.

    Article  PubMed  Google Scholar 

  53. Wuhl E, Mehls O, Schaefer F. Antihypertensive and antiproteinuric efficacy of ramipril in children with chronic renal failure. Kidney Int. 2004;66:768–76.

    Article  PubMed  Google Scholar 

  54. Franscini LM, Von Vigier RO, Pfister R, Casaulta-Aebischer C, Fossali E, Bianchetti MG. Effectiveness and safety of the angiotensin II antagonist irbesartan in children with chronic kidney diseases. Am J Hypertens. 2002;15:1057–63.

    Article  PubMed  CAS  Google Scholar 

  55. Litwin M, Grenda R, Sladowska J, Antoniewicz J. Add-on therapy with angiotensin II receptor 1 blocker in children with chronic kidney disease already treated with angiotensin-converting enzyme inhibitors. Pediatr Nephrol. 2006;21:1716–22.

    Article  PubMed  Google Scholar 

  56. Ardissino G, Viganò S, Testa S, Daccò V, Paglialonga F, Leoni A, et al. No clear evidence of ACEi efficacy on the progression of chronic kidney disease in children with hypodysplastic nephropathy—report from the ItalKid Project database. Nephrol Dial Transplant. 2007;22:2525–30.

    Article  PubMed  Google Scholar 

  57. McDonald SP, Craig JC. Long-term survival of children with end-stage renal disease. N Engl J Med. 2004;350:2654–62.

    Article  PubMed  CAS  Google Scholar 

  58. Honda M. The present status of peritonitis in pediatric peritoneal dialysis. Data from Committee on Pediatric PD. Jin to Touseki. 2000;49:283–6.

    Google Scholar 

  59. Thomas SE, Hickman RO, Tapper D, Shaw DW, Fouser LS, McDonald RA. Asymptomatic inferior vena cava abnormalities in three children with end-stage renal disease: risk factors and screening guidelines for pretransplant diagnosis. Pediatr Transplant. 2000;4:28–34.

    Article  PubMed  CAS  Google Scholar 

  60. Kasiske BL, Snyder JJ, Matas AJ, Ellison MD, Gill JS, Kausz AT. Preemptive kidney transplantation: the advantage and the advantaged. J Am Soc Nephrol. 2002;13:1358–64.

    Article  PubMed  Google Scholar 

  61. Cransberg K, Smits JM, Offner G, Nauta J, Persijn GG. Kidney transplantation without prior dialysis in children: the Eurotransplant experience. Am J Transplant. 2006;6:1858–64.

    Article  PubMed  CAS  Google Scholar 

  62. Vats AN, Donaldson L, Fine RN, Chavers BM. Pretransplant dialysis status and outcome of renal transplantation in North American children: a NAPRTCS Study. North American Pediatric Renal Transplant Cooperative Study. Transplantation. 2000;69:1414–9.

    Article  PubMed  CAS  Google Scholar 

  63. Shishido S, Asanuma H, Tajima E, Hoshinaga K, Ogawa O, Hasegawa A, et al. ABO-incompatible living-donor kidney transplantation in children. Transplantation. 2001;72:1037–42.

    Article  PubMed  CAS  Google Scholar 

  64. Hataya H, Ikeda M, Shishido S, Honda M. Treatment of recurrent post-transplant FSGS. Jpn J Pediatr Ren Failure. 2007;27:22–3.

    Google Scholar 

  65. Ohta T, Kawaguchi H, Hattori M, Komatsu Y, Akioka Y, Nagata M, et al. Effect of pre- and postoperative plasmapheresis on posttransplant recurrence of focal segmental glomerulosclerosis in children. Transplantation. 2001;71:628–33.

    Article  PubMed  CAS  Google Scholar 

Referred guidelines and others

  • a. Edelmann CM. Pediatric kidney disease. 2nd ed. Boston: Little Brown; 1992.

  • b. Baratt TM, et al. Pediatric nephrology. 4th ed. Baltimore:Lippincott Williams and Willkins; 1999.

  • c. American Academy of Pediatrics. Active immunization. In: Pickering LK, Baker CJ, Long SS, McMillan JA, editors. Red Book: 2006 Report of the Committee on Infectious Diseases. 27th ed. Elk Grove Village: American Academy of Pediatrics; 2006. p. 9–103.

  • d. KDOQI, National Kidney Foundation. K/DOQI clinical practice guidelines for bone metabolism and disease in children with chronic kidney disease. Am J Kidney Dis. 2005;46 Suppl 1:S1–121.

    Google Scholar 

  • e. European best practice guidelines for the management of anaemia in patients with chronic renal failure. Working Party for European Best Practice Guidelines for the Management of Anaemia in Patients with Chronic Renal Failure. Nephrol Dial Transplant. 1999;14 Suppl 5:1–50.

  • f. KDOQI; National Kidney Foundation. III. Clinical practice recommendations for anemia in chronic kidney disease in children. Am J Kidney Dis. 2006;47 Suppl 3:S86–108.

    Google Scholar 

  • g. The Japanese society for pediatric nephrology. Guidelines for the treatment of childhood idiopathic nephrotic syndrome, ver1.0.Nippon Jinzo Gakkai Shi, 2008;50:31–41.

  • h. Pediatric nephrology 5th ed. Steroid-sensitive idiopathic nephrotic syndrome in children. p. 543–53.

  • i. The Japanese society for pediatric nephrology. Guidelines for the treatment of childhood IgA nephropathy, ver1.0

  • j. UpToDate: treatment and prognosis of IgA nephropathy.

  • k. Hogg RJ, Furth S, Lemley KV, Portman R, Schwartz GJ, Coresh J, Balk E, Lau J, Levin A, Kausz AT, Eknoyan G, Levey AS;National Kidney Foundation’s Kidney Disease Outcomes Quality Initiative. National Kidney Foundation’s Kidney Disease Outcomes Quality Initiative clinical practice guidelines for chronic kidney disease in children and adolescents: evaluation, classification, and stratification. Pediatrics. 2003;111:1416–21.

    Article  PubMed  Google Scholar 

  • ℓ. Warady BA, Alexander SR, Watkins S, Kohaut E, Harmon WE. Optimal care of the pediatric end-stage renal disease patient on dialysis. Am J Kidney Dis. 1999;33:567–83.

    Article  PubMed  CAS  Google Scholar 

  • m. Honda M. Management of children with end stage renal failure. Nippon Shonika Gakkai Zasshi. 2004;108:3–11.

    Google Scholar 

Chapter 18: Initiation of dialysis References

  1. Nakamura S, Nakata H, Yoshihara F, Kamide K, Horio T, Nakahama H, et al. Effect of early nephrology referral on the initiation of hemodialysis and survival in patients with chronic kidney disease and cardiovascular diseases. Circ J. 2007;71:511–6.

    Article  PubMed  Google Scholar 

  2. Martínez-Ramírez HR, Jalomo-Martínez B, Cortés-Sanabria L, Rojas-Campos E, Barragán G, Alfaro G, Cueto-Manzano AM. Renal function preservation in type 2 diabetes mellitus patients with early nephropathy: a comparative prospective cohort study between primary health care doctors and a nephrologist. Am J Kidney Dis. 2006;47:78–87.

    Article  PubMed  CAS  Google Scholar 

  3. Goovaerts T, Jadoul M, Goffin E. Influence of a pre-dialysis education programme(PDEP)on the mode of renal replacement therapy. Nephrol Dial Transplant. 2005;20:1842–7.

    Article  PubMed  Google Scholar 

  4. Levin A, Lewis M, Mortiboy P, Faber S, Hare I, Porter EC, et al. Multidisciplinary predialysis programs: quantification and limitations of their impact on patient outcomes in two Canadian settings. Am J Kidney Dis. 1997;29:533–40.

    Article  PubMed  CAS  Google Scholar 

  5. Devins GM, Mendelssohn DC, Barre PE, Binik YM. Predialysis psychoeducational intervention and coping styles influence time to dialysis in chronic kidney disease. Am J Kidney Dis. 2003;42:693–703.

    Article  PubMed  Google Scholar 

  6. Inaguma D, Tatematsu M, Shinjo H, Suzuki S, Mishima T, Inaba S, et al. Effect of an educational program on the predialysis period for patients with chronic renal failure. Clin Exp Nephrol. 2006;10:274–8.

    Article  PubMed  Google Scholar 

  7. Survey Committee Japanese Society for Dialysis Therapy: An overview of regular dialysis treatment in Japan as of Dec. 31, 2006 (Advance report), Japanese Society for Dialysis Therapy, Tokyo; 2007. p. 45–53.

  8. Survey Committee Japanese Society for Dialysis Therapy. An overview of regular dialysis treatment in Japan as of Dec. 31, 2006 (CD-ROM version). Tokyo: Japanese Society for Dialysis Therapy; 2007.

    Google Scholar 

  9. Termorshuizen F, Korevaar JC, Dekker FW, Van Manen JG, Boeschoten EW, Krediet RT. Hemodialysis and peritoneal dialysis: comparison of adjusted mortality rates according to the duration of dialysis: analysis of The Netherlands Cooperative Study on the Adequacy of Dialysis 2. J Am Soc Nephrol. 2003;14:2851–60.

    Article  PubMed  Google Scholar 

  10. Ganesh SK, Hulbert-Shearon T, Port FK, Eagle K, Stack AG. Mortality differences by dialysis modality among incident ESRD patients with and without coronary artery disease. J Am Soc Nephrol. 2003;14:415–24.

    Article  PubMed  Google Scholar 

  11. Vonesh EF, Snyder JJ, Foley RN, Collins AJ. The differential impact of risk factors on mortality in hemodialysis and peritoneal dialysis. Kidney Int. 2004;66:2389–401.

    Article  PubMed  Google Scholar 

  12. Jaar BG, Coresh J, Plantinga LC, Fink NE, Klag MJ, Levey AS, et al. Comparing the risk for death with peritoneal dialysis and hemodialysis in a national cohort of patients with chronic kidney disease. Ann Int Med. 2005;143:174–83.

    Article  PubMed  Google Scholar 

  13. Liem YS, Wong JB, Hunink MG, de Charro FT, Winkelmayer WC. Comparison of hemodialysis and peritoneal dialysis survival in the Netherlands. Kidney Int. 2007;71:153–8.

    Article  PubMed  CAS  Google Scholar 

  14. Bargman JM, Thorpe KE, Churchill DN. Relative contribution of residual renal function and peritoneal clearance to adequacy of dialysis: a reanalysis of the CANUSA study. J Am Soc Nephrol. 2001;12:2158–62.

    PubMed  CAS  Google Scholar 

Chapter 19: Kidney transplantation References

  1. Wolfe RA, Ashby VB, Milford EL, Ojo AO, Ettenger RE, Agodoa LY, et al. Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. N Engl J Med. 1999;341:1725–30.

    Article  PubMed  CAS  Google Scholar 

  2. Mange KC, Joffe MM, Feldman HI. Effect of the use or nonuse of long-term dialysis on the subsequent survival of renal transplants from living donors. N Engl J Med. 2001;344:726–31.

    Article  PubMed  CAS  Google Scholar 

  3. Meier-Kriesche HU, Kaplan B. Waiting time on dialysis as the strongest modifiable risk factor for renal transplant outcomes: a paired donor kidney analysis. Transplantation. 2002;74:1377–81.

    Article  PubMed  Google Scholar 

  4. Karthikeyan V, Karpinski J, Nair RC, Knoll G. The burden of chronic kidney disease in renal transplant recipients. Am J Transplant. 2004;4:262–9.

    Article  PubMed  Google Scholar 

Chapter 20: CKD care for the elderly References

  1. Coresh J, W.ei GL, McQuillan G, Brancati FL, Levey AS, Jones C, et al. Prevalence of high blood pressure and elevated serum creatinine level in the United States: findings from the third National Health and Nutrition Examination Survey (1988–1994). Arch Int Med. 2001;161:1207–16.

    Article  CAS  Google Scholar 

  2. Walker WG, Neaton JD, Cutler JA, Neuwirth R, Cohen JD. Renal function change in hypertensive members of the Multiple Risk Factor Intervention Trial. Racial and treatment effects. The MRFIT Research Group. JAMA. 1992;268:3085–91.

    Article  PubMed  CAS  Google Scholar 

  3. Imai E, Horio M, Iseki K, Yamagata K, Watanabe T, Hara S, et al. Prevalence of chronic kidney disease (CKD) in the Japanese general population predicted by the MDRD equation modified by a Japanese coefficient. Clin Exp Nephrol. 2007;11:156–63.

    Article  PubMed  Google Scholar 

  4. Mariani AJ, Mariani MC, Macchioni C, Stams UK, Hariharan A, Moriera A. The significance of adult hematuria: 1, 000 hematuria evaluations including a risk-benefit and cost-effectiveness analysis. J Urol. 1989;141:350–5.

    Article  PubMed  CAS  Google Scholar 

  5. Grossfeld GD, Litwin MS, Wolf JS Jr, Hricak H, Shuler CL, Agerter DC, et al. Evaluation of asymptomatic microscopic hematuria in adults: the American Urological Association best practice policy. Part II. Patient evaluation, cytology, voided markers, imaging, cystoscopy, nephrology evaluation, and follow-up. Urology. 2001;57:604–10.

    Article  PubMed  CAS  Google Scholar 

  6. Bleyer AJ, Shemanski LR, Burke GL, Hansen KJ, Appel RG. Tobacco, hypertension, and vascular disease: risk factors for renal functional decline in an older population. Kidney Int. 2000;57:2072–9.

    Article  PubMed  CAS  Google Scholar 

  7. Collins AJ, Foley R, Herzog C, Chavers B, Gilbertson D, Ishani A, et al. Excerpts from the United States Renal Data System 2007 annual data report. Am J Kidney Dis. 2008;51:S1–320.

    PubMed  Google Scholar 

  8. Fouque D, Wang P, Laville M, Boissel JP. Low protein diets delay end-stage renal disease in non-diabetic adults with chronic renal failure. Nephrol Dial Transplant. 2000;15:1986–92.

    Article  PubMed  CAS  Google Scholar 

  9. Rosman JB, ter Wee PM, Meijer S, Piers-Becht TP, Sluiter WJ, Donker AJ. Prospective randomised trial of early dietary protein restriction in chronic renal failure. Lancet. 1984;2:1291–6.

    Article  PubMed  CAS  Google Scholar 

  10. Rosman JB, Langer K, Brandl M, Piers-Becht TP, van der Hem GK, ter Wee PM, Donker AJ. Protein-restricted diets in chronic renal failure: a four year follow-up shows limited indications. Kidney Int (Suppl). 1989;27:S96–102.

    CAS  Google Scholar 

  11. D’Amico G, Gentile MG, Fellin G, Manna G, Cofano F. Effect of dietary protein restriction on the progression of renal failure: a prospective randomized trial. Nephrol Dial Transplant. 1994;9:1590–4.

    PubMed  Google Scholar 

  12. Meloni C, Morosetti M, Suraci C, Pennafina MG, Tozzo C, Taccone-Gallucci M, et al. Severe dietary protein restriction in overt diabetic nephropathy: benefits or risks? J Ren Nutr. 2002;12:96–101.

    Article  PubMed  Google Scholar 

  13. Meloni C, Tatangelo P, Cipriani S, Rossi V, Suraci C, Tozzo C, et al. Adequate protein dietary restriction in diabetic and nondiabetic patients with chronic renal failure. J Ren Nutr. 2004b;14:208–13.

    Article  PubMed  Google Scholar 

  14. Ihle BU, Becker GJ, Whitworth JA, Charlwood RA, Kincaid-Smith PS. The effect of protein restriction on the progression of renal insufficiency. N Engl J Med. 1989b;321:1773–7.

    Article  PubMed  CAS  Google Scholar 

  15. Jungers P, Chauveau P, Ployard F, Lebkiri B, Ciancioni C, Man NK. Comparison of ketoacids and low protein diet on advanced chronic renal failure progression. Kidney Int (Suppl). 1987b;22:S67–71.

    CAS  Google Scholar 

  16. Brunori G, Viola BF, Parrinello G, De Biase V, Como G, Franco V, et al. Efficacy and safety of a very-low-protein diet when postponing dialysis in the elderly: a prospective randomized multicenter controlled study. Am J Kidney Dis. 2007;49:569–80.

    Article  PubMed  CAS  Google Scholar 

  17. Luft FC, Fineberg NS, Weinberger MH. The influence of age on renal function and renin and aldosterone responses to sodium-volume expansion and contraction in normotensive and mildly hypertensive humans. Am J Hypertens. 1992;5:520–8.

    Article  PubMed  CAS  Google Scholar 

  18. Appel LJ, Espeland MA, Easter L, Wilson AC, Folmar S, Lacy CR. Effects of reduced sodium intake on hypertension control in older individuals: results from the Trial of Nonpharmacologic Interventions in the Elderly (TONE). Arch Int Med. 2001;161:685–93.

    Article  CAS  Google Scholar 

  19. Suzuki H, Saruta T, Calcium Antagonist in Progressive Renal Insufficienct Study Group. Effects of calcium antagonist, benidipine, on the progression of chronic renal failure in the elderly: a 1-year follow-up. Clin Exp Hypertens. 2001b;23:189–201.

    Article  PubMed  CAS  Google Scholar 

  20. Beckett NS, Peters R, Fletcher AE, Staessen JA, Liu L, Dumitrascu D, et al. Treatment of hypertension in patients 80 years of age or older. N Engl J Med. 2008;358:1887–98.

    Article  PubMed  CAS  Google Scholar 

  21. Fagard RH, Staessen JA, Thijs L, Celis H, Bulpitt CJ, de Leeuw PW, et al. Hypertension and C. On-treatment diastolic blood pressure and prognosis in systolic hypertension. Arch Int Med. 2007;167:1884–91.

    Article  Google Scholar 

  22. Gueyffier F, Bulpitt C, Boissel JP, Schron E, Ekbom T, Fagard R, et al. Antihypertensive drugs in very old people: a subgroup analysis of randomised controlled trials. Lancet. 1999;353:793–6.

    Article  PubMed  CAS  Google Scholar 

  23. Staessen JA, Gasowski J, Wang JG, Thijs L, Den Hond E, Boissel JP, et al. Risks of untreated and treated isolated systolic hypertension in the elderly: meta-analysis of outcome trials. Lancet. 2000;355:865–72.

    Article  PubMed  CAS  Google Scholar 

  24. Collaborative Research Group. Prevention of stroke by antihypertensive drug treatment in older persons with isolated systolic hypertension: final results of the Systolic Hypertension in the Elderly Program (SHEP). JAMA. 1991;265:3255–64.

    Article  Google Scholar 

  25. Pahor M, Shorr RI, Somes GW, Cushman WC, Ferrucci L, Bailey JE, et al. Diuretic-based treatment and cardiovascular events in patients with mild renal dysfunction enrolled in the systolic hypertension in the elderly program. Arch Int Med. 1998;158:1340–5.

    Article  CAS  Google Scholar 

  26. Masaki KH, Schatz IJ, Burchfiel CM, Sharp DS, Chiu D, Foley D, et al. Orthostatic hypotension predicts mortality in elderly men: the Honolulu Heart Program. Circulation. 1998;98:2290–5.

    Article  PubMed  CAS  Google Scholar 

  27. Somes GW, Pahor M, Shorr RI, Cushman WC, Applegate WB. The role of diastolic blood pressure when treating isolated systolic hypertension. Arch Int Med. 1999;159:2004–9.

    Article  CAS  Google Scholar 

  28. Boutitie F, Gueyffier F, Pocock S, Fagard R, Boissel JP, INDANA Project Steering Committee. Individual Data ANalysis of Antihypertensive intervention. J-shaped relationship between blood pressure and mortality in hypertensive patients: new insights from a meta-analysis of individualpatient data. Ann Int Med. 2002;136:438–48.

    Article  PubMed  Google Scholar 

  29. Campbell KH, O’Hare AM. Kidney disease in the elderly: update on recent literature. Curr Opin Nephrol Hypertens. 2008;17:298–303.

    Article  PubMed  Google Scholar 

  30. Staessen JA, Fagard R, Thijs L, Celis H, Arabidze GG, Birkenhager WH, et al. Randomised double-blind comparison of placebo and active treatment for older patients with isolated systolic hypertension. Lancet. 1997;350:757–64.

    Article  PubMed  CAS  Google Scholar 

  31. The ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic:The Antihypertensive and Lipid-Lowering treatment to prevent Heart Attack Trial (ALLHAT). JAMA. 2002;288:2981–97.

    Article  Google Scholar 

  32. Kostis JB, Davis BR, Cutler J, Grimm RH Jr, Berge KG, Cohen JD, et al. Prevention of heart failure by antihypertensive drug treatment in older persons with isolated systolic hypertension. SHEP Cooperative Research Group. JAMA. 1997;278:212–6.

    Article  PubMed  CAS  Google Scholar 

  33. Messerli FH, Grossman E, Goldbourt U. Are beta-blockers efficacious as first-line therapy for hypertension in the elderly? JAMA. 1998;279:1903–7.

    Article  PubMed  CAS  Google Scholar 

  34. Dahlof B, Devereux RB, Kjeldsen SE, Julius S, Beevers G, de Faire U, et al. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet. 2002;359:995–1003.

    Article  PubMed  CAS  Google Scholar 

  35. Kjeldsen SE, Dahlof B, Devereux RB, Julius S, Aurup P, Edelman J, et al. Effects of losartan on cardiovascular morbidity and mortality in patients with isolated systolic hypertension and left ventricular hypertrophy: a Losartan Intervention for Endpoint Reduction (LIFE) substudy. JAMA. 2002;288:1491–8.

    Article  PubMed  CAS  Google Scholar 

  36. Frances CD, Noguchi H, Massie BM, Browner WS, McClellan M. Are we inhibited? Renal insufficiency should not preclude the use of ACE inhibitors for patients with myocardial infarction and depressed left ventricular function. Arch Int Med. 2000;160:2645–50.

    Article  CAS  Google Scholar 

  37. Pitt B, Segal R, Martinez FA, Meurers G, Cowley AJ, Thomas I, et al. Randomised trial of losartan versus captopril in patients over 65 with heart failure (Evaluation of Losartan in the Elderly Study, ELITE). Lancet. 1997;349:747–52.

    Article  PubMed  CAS  Google Scholar 

  38. Neal B, MacMahon S, Chapman N. Effects of ACE inhibitors, calcium antagonists, and other blood-pressure-lowering drugs: results of prospectively designed overviews of randomized trials. Blood Pressure Lowering Treatment Trialists’ Collaboration. Lancet. 2000;356:1955–64.

    Article  PubMed  CAS  Google Scholar 

  39. Lawes CM, Bennett DA, Feigin VL, Rodgers A. Blood pressure and stroke:an overview of published reviews. Stroke. 2004;35:1024–33.

    Article  PubMed  Google Scholar 

  40. Mailloux LU, Napolitano B, Bellucci AG, Vernace M, Wilkes BM, Mossey RT. Renal vascular disease causing end-stage renal disease, incidence, clinical correlates, and outcomes: a 20-year clinical experience. Am J Kidney Dis. 1994;24:622–9.

    Article  PubMed  CAS  Google Scholar 

  41. Appel RG, Bleyer AJ, Reavis S, Hansen KJ. Renovascular disease in older patients beginning renal replacement therapy. Kidney Int. 1995;48:171–6.

    Article  PubMed  CAS  Google Scholar 

  42. Tanemoto M, Saitoh H, Satoh F, Satoh H, Abe T, Ito S. Predictors of undiagnosed renal artery stenosis among Japanese patients with risk factors of atherosclerosis. Hypertens Res. 2005;28:237–42.

    Article  PubMed  Google Scholar 

  43. Kalra PA, Guo H, Kausz AT, Gilbertson DT, Liu J, Chen SC, et al. Atherosclerotic renovascular disease in United States patients aged 67 years or older:Risk factors, revascularization, and prognosis. Kidney Int. 2005;68:293–301.

    Article  PubMed  Google Scholar 

  44. Tanaka Y, Atsumi Y, Matsuoka K, Onuma T, Tohjima T, Kawamori R. Role of glycemic control and blood pressure in the development and progression of nephropathy in elderly Japanese NIDDM patients. Diabetes Care. 1998;21:116–20.

    Article  PubMed  CAS  Google Scholar 

  45. Vidt DG, Harris S, McTaggart F, Ditmarsch M, Sager PT, Sorof JM. Effect of short-term rosuvastatin treatment on estimated glomerular filtration rate. Am J Cardiol. 2006b;97:1602–6.

    Article  PubMed  CAS  Google Scholar 

  46. Janssen I, Mark AE. Elevated body mass index and mortality in the elderly. Obes Rev. 2007;8:41–59.

    Article  PubMed  CAS  Google Scholar 

  47. Elsayed EF, Samak MJ, Tighiouart H, Griffith JL, Kurth T, Salem DN, et al. Waist-to-hip ratio, body mass index, and subsequent kidney disease and death. Am J Kidney Dis. 2008;52:29–38.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chou CY, Lin CH, Lin CC, Huang CC, Liu CS, Lai SW. Association between waist-to-hip ratio and chronic kidney disease in the elderly. Int Med J. 2008;38:402–6.

    Article  CAS  Google Scholar 

  49. Elsayed EF, Tighiouart H, Weiner DE, Griffith J, Salem D, Levey AS, et al. Waist-to-hip ratio and body mass index as risk factors for cardiovascular events in CKD. Am J Kidney Dis. 2008b;52:49–57.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sattar N, McConnachie A, Shaper AG, Blauw GJ, Buckley BM, de Craen AJ, et al. Can metabolic syndrome usefully predict cardiovascular disease and diabetes? Outcome data from two prospective studies. Lancet. 2008;371:1927–35.

    Article  PubMed  Google Scholar 

  51. Monami M, Lamanna C, Balzi D, Bartalucci F, Melani C, Masotti G, et al. Metabolic syndrome and cardiovascular mortality in older type 2 patients:a longitudinal study. J Gerontol A Biol Sci Med Sci. 2008;63:646–9.

    Article  PubMed  Google Scholar 

  52. Ninomiya T, Kiyohara Y, Kubo M, Yonemoto K, Tanizaki Y, Doi Y, et al. Metabolic syndrome and CKD in a general Japanese population: The Hisayama Study. Am J Kidney Dis. 2006b;48:383–91.

    Article  PubMed  Google Scholar 

  53. Tanaka H, Shiohira Y, Uezu Y, Higa A, Iseki K. Metabolic syndrome and chronic kidney disease in Okinawa, Japan. Kidney Int. 2006b;69:369–74.

    Article  PubMed  CAS  Google Scholar 

  54. Oniscu GC, Brown H, Forsythe JL. How old is old for transplantation? Am J Transplant. 2004;4:2067–74.

    Article  PubMed  Google Scholar 

  55. Remuzzi G, Cravedi P, Perna A, Dimitrov BD, Turturro M, Locatelli G, et al. Long-term outcome of renal transplantation from older donors. N Engl J Med. 2006;354:343–52.

    Article  PubMed  CAS  Google Scholar 

  56. Najarian JS, Chavers BM, McHugh LE, Matas AJ. 20 years or more of follow-up of living kidney donors. Lancet. 1992;340:807–10.

    Article  PubMed  CAS  Google Scholar 

  57. Gossmann J, Wilhelm A, Kachel HG, Jordan J, Sann U, Geiger Kramar W, et al. Long-term consequences of live kidney donation follow-up in 93% of living kidney donors in a single transplant center. Am J Transplant. 2005;5:2417–24.

    Article  PubMed  Google Scholar 

  58. Saran R, Marshall SM, Madsen R, Keavey P, Tapson JS. Long-term follow-up of kidney donors: a longitudinal study. Nephrol Dial Transplant. 1997;12:1615–21.

    Article  PubMed  CAS  Google Scholar 

  59. Fehrman-Ekholm I, Norden G, Lennerling A, Rizell M, Mjörnstedt L, Wramner L, et al. Incidence of end-stage renal disease among live kidney donors. Transplantation. 2006;82:1646–8.

    Article  PubMed  Google Scholar 

  60. Mehran R, Aymong ED, Nikolsky E, Lasic Z, Iakovou I, Fahy M, et al. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation. J Am Coll Cardiol. 2004;44:1393–9.

    PubMed  Google Scholar 

  61. Murray MD, Black PK, Kuzmik DD, Haag KM, Manatunga AK, Mullin MA, et al. Acute and chronic effects of nonsteroidal anti-inflammatory drugs on glomerular filtration rate in elderly patients. Am J Med Sci. 1995;310:188–97.

    Article  PubMed  CAS  Google Scholar 

  62. Swan SK, Rudy DW, Lasseter KC, Ryan CF, Buechel KL, Lambrecht LJ, et al. Effect of cyclooxygenase-2 inhibition on renal function in elderly persons receiving a low-salt diet. Ann Int Med. 2000;133:1–9.

    Article  PubMed  CAS  Google Scholar 

  63. Gooch K, Culleton BF, Manns BJ, ZHang J, Alfonso H, Tonelli M, Frank C, Klarenbach S, Hemmelgarn BR. NSAID use and progression of chronic kidney disease. Am J Med. 2007;120:280.e1–280.e7.

    Article  PubMed  CAS  Google Scholar 

Chapter 21: Drug administration References

  1. McCullough PA, Wolyn R, Rocher LL, Levin RN, O’Neill WW. Acute renal failure after coronary intervention: incidence, risk factors, and relationship to mortality. Am J Med. 1997;103:368–75.

    Article  PubMed  CAS  Google Scholar 

  2. Bader BD, Berger ED, Heede MB, Silberbaur I, Duda S, Risler T, et al. What is the best hydration regimen to prevent contrast media-induced nephrotoxicity? Clin Nephrol. 2004;62:1–7.

    Article  PubMed  CAS  Google Scholar 

  3. Trivedi HS, Moore H, Nasr S, Aggarwal K, Agrawal A, Goel P, et al. A randomized prospective trial to assess the role of saline hydration on the development of contrast nephrotoxicity. Nephron Clin Pract. 2003;93:C29–34.

    Article  PubMed  CAS  Google Scholar 

  4. Merten GJ, Burgess WP, Gray LV, Holleman JH, Roush TS, Kowalchuk GJ, et al. Prevention of contrast-induced nephropathy with sodium bicarbonate: a randomized controlled trial. JAMA. 2004;291:2328–34.

    Article  PubMed  CAS  Google Scholar 

  5. Mueller C, Buerkle G, Buettner HJ, Petersen J, Perruchoud AP, Eriksson U, et al. Prevention of contrast media-associated nephropathy: randomized comparison of 2 hydration regimens in 1,620 patients undergoing coronary angioplasty. Arch Int Med. 2002;162:329–36.

    Article  CAS  Google Scholar 

  6. Cruz DN, Perazella MA, Bellomo R, Corradi V, de Cal M, Kuang D, et al. Extracorporeal blood purification therapies for prevention of radiocontrast-induced nephropathy: a systematic review. Am J Kidney Dis. 2006;48:361–71.

    Article  PubMed  Google Scholar 

  7. Frank H, Werner D, Lorusso V, Klinghammer L, Daniel WG, Kunzendorf U, et al. Simultaneous hemodialysis during coronary angiography fails to prevent radiocontrast-induced nephropathy in chronic renal failure. Clin Nephrol. 2003;60:176–82.

    Article  PubMed  CAS  Google Scholar 

  8. Owada A, Nakao M, Koike J, Ujiie K, Tomita K, Shiigai T. Effects of oral adsorbent AST-120 on the progression of chronic renal failure:a randomized controlled study. Kidney Int. 1997;63 Suppl:S188–90.

    CAS  Google Scholar 

  9. Shoji T, Wada A, Inoue K, Hayashi D, Tomida K, Furumatsu Y, et al. Prospective randomized study evaluating the efficacy of the spherical adsorptive carbon AST-120 in chronic kidney disease patients with moderate decrease in renal function. Nephron Clin Pract. 2007;105:99–107.

    Article  CAS  Google Scholar 

  10. Takahashi N, Kawaguchi T, Suzuki T. Therapeutic effects of long-term administration of an oral adsorbent in patients with chronic renal failure: two-year study. Int J Urol. 2005;12:7–11.

    Article  PubMed  CAS  Google Scholar 

  11. Sanaka T, Akizawa T, Koide K, Koshikawa S. Protective effect of an oral adsorbent on renal function in chronic renal failure: determinants of its efficacy in diabetic nephropathy. Ther Apher Dial. 2004;8:232–40.

    Article  PubMed  CAS  Google Scholar 

  12. Ueda H, Shibahara N, Takagi S, Inoue T, Katsuoka Y. AST-120, an oral adsorbent, delays the initiation of dialysis in patients with chronic kidney diseases. Ther Apher Dial. 2007;11:189–95.

    Article  PubMed  CAS  Google Scholar 

  13. Schulman G, Agarwal R, Acharya M, Berl T, Blumenthal S, Kopyt N. A multicenter, randomized, double-blind, placebo-controlled, dose-ranging study of AST-120 (Kremezin) in patients with moderate to severe CKD. Am J Kidney Dis. 2006;47:565–77.

    Article  PubMed  CAS  Google Scholar 

  14. Yorioka N, Kiribayashi K, Naito T, Ogata S, Yokoyama Y, Kyuden Y, et al. An oral adsorbent, AST-120, combined with a low-protein diet and RAS blocker, for chronic kidney disease. J Nephrol. 2008;21:213–20.

    PubMed  CAS  Google Scholar 

Referred guidelines and others

Download references

About this article

Cite this article

Evidence-based Practice Guideline for the Treatment of CKD. Clin Exp Nephrol 13, 537–566 (2009). https://doi.org/10.1007/s10157-009-0237-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-009-0237-8

Navigation