Skip to main content

Advertisement

Log in

Executive summary of clinical practice guide on fracture risk in lifestyle diseases

Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Accumulating evidence has shown that patients with lifestyle diseases such as type 2 diabetes mellitus, chronic kidney disease, and chronic obstructive pulmonary disease are at increased risk of osteoporotic fracture. Fractures deteriorate quality of life, activities of daily living, and mortality as well as a lifestyle disease. Therefore, preventing fracture is an important issue for those patients. Although the mechanism of the lifestyle diseases-induced bone fragility is still unclear, not only bone mineral density (BMD) reduction but also bone quality deterioration are involved in it. Because fracture predictive ability of BMD and FRAX® is limited, especially for patients with lifestyle diseases, the optimal management strategy should be established. Thus, when the intervention of the lifestyle diseases-induced bone fragility is initiated, the deterioration of bone quality should be taken into account. We here review the association between lifestyle diseases and fracture risk and proposed an algorism of starting anti-osteoporosis drugs for patients with lifestyle diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Committee for Development Guidelines for Prevention and Treatment of Osteoporosis (chairman Orimo H) (2015) Japanese 2015 guidelines for prevention and treatment of osteoporosis. Life Science Publishing 2015 (in Japanese)

  2. Ferrari SL, Abrahamsen B, Napoli N, Akesson K, Chandran M, Eastell R, El-Haji Fuleihan G, Josse R, Kendler DL, Kraenzlin M, Suzuki A, Pierroz DD, Schwartz AV, Leslie WD, Bone, and diabetes working group of IOF (2018) Diagnosis and management of bone fragility in diabetes: an emerging challenge. Osteoporos Int 29:2585–2596

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Schwartz AV (2017) Diabetes, bone and glucose-lowering agents: clinical outcomes. Diabetologia 60:1170–1179

    CAS  PubMed  Google Scholar 

  4. Kim SM, Long J, Montez-Rath M, Leonard M, Chertow GM (2015) Hip fracture in patients with non-dialysis-requiring chronic kidney disease. J Bone Miner Res 31:1803–1809

    Google Scholar 

  5. Inoue D, Watanabe R, Okazaki R (2016) COPD and osteoporosis: links, risks, and treatment challenges. Int J COPD 11:637–648

    CAS  Google Scholar 

  6. Manolagas SC, Almeida M (2007) Gone with the Wnts: beta-catenin, T-cell factor, forkhead box O, and oxidative stress in age-dependent diseases of bone, lipid, and glucose metabolism. Mol Endocrinol 21:2605–2614

    CAS  PubMed  Google Scholar 

  7. Manolagas SC, Parfitt AM (2010) What old means to bone. Trends Endocrinol Metab 21:369–374

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Brownlee M (1995) Advanced protein glycosylation in diabetes and aging. Annu Rev Med 46:223–234

    CAS  PubMed  Google Scholar 

  9. Saito M, Marumo K (2010) Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int 21:195–214

    CAS  PubMed  Google Scholar 

  10. Notsu M, Yamaguchi T, Okazaki K, Tanaka K, Ogawa N, Kanazawa I, Sugimoto T (2014) Advanced glycation end product 3 (AGE3) suppresses the mineralization of mouse stromal ST2 cells and human mesenchymal stem cells by increasing TGF-β expression and secretion. Endocrinology 155:2402–2410

    PubMed  Google Scholar 

  11. Tanaka K, Yamaguchi T, Kanazawa I, Sugimoto T (2015) Effects of high glucose and advanced glycation end products on the expressions of sclerostin and RANKL as well as apoptosis in osteocyte-like MLO-Y4-A2 cells. Biochem Biophys Res Commun 461:193–199

    CAS  PubMed  Google Scholar 

  12. Li Z, Li C, Zhou Y, Chen W, Luo G, Zhang Z, Wang H, Zhang Y, Xu D, Sheng P (2016) Advanced glycation end products biphasically modulate bone resorption in osteoclast-like cells. Am J Physiol Endocrinol Metab 310:E355–366

    PubMed  Google Scholar 

  13. Saito M, Marumo K (2015) Effects of collagen crosslinking on bone material properties in health and disease. Calcif Tissue Int 97:242–261

    CAS  PubMed  Google Scholar 

  14. Saito M, Fujii K, Soshi S, Tanaka T (2006) Reductions in degree of mineralization and enzymatic collagen cross-links and increases in glycation induced pentosidine in the femoral neck cortex in cases of femoral neck fracture. Osteoporos Int 17:986–995

    CAS  PubMed  Google Scholar 

  15. Kanazawa I, Takeno A, Tanaka KI, Yamane Y, Sugimoto T (2019) Osteoporosis and vertebral fracture are associated with deterioration of activities of daily living and quality of life in patients with type 2 diabetes mellitus. J Bone Miner Metab 37:503–511

    PubMed  Google Scholar 

  16. Almdal T, Scharling H, Jensen JS, Vestergaad H (2004) The independent effect of type 2 diabetes mellitus on ischemic heart disease, stroke, and death: a population-based study of 13,000 men and women with 20 years of follow-up. Arch Intern Med 164:1422–1426

    PubMed  Google Scholar 

  17. Miyake H, Kanazawa I, Sugimoto T (2018) Association of bone mineral density, bone turnover markers, and vertebral fractures with all-cause mortality in type 2 diabetes mellitus. Calcif Tissue Int 102:1–13

    CAS  PubMed  Google Scholar 

  18. Vestergaard P (2007) Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis. Osteoporos Int 18:427–444

    CAS  PubMed  Google Scholar 

  19. Janghorbani M, Van Dam RM, Willett WC, Hu FB (2007) Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol 166:495–505

    PubMed  Google Scholar 

  20. Wang J, You W, Jing Z, Wang R, Fu Z, Wang Y (2016) Increased risk of vertebral fracture in patients with diabetes: a meta-analysis of cohort studies. Int Orthop 40:1299–1307

    PubMed  Google Scholar 

  21. Yamamoto M, Yamaguchi T, Yamauchi M, Kaji H, Sugimoto T (2009) Diabetic patients have an increased risk of vertebral fractures independent of BMD or diabetic complications. J Bone Miner Res 24:702–709

    CAS  PubMed  Google Scholar 

  22. Saito M, Fujii K, Mori Y, Marumo K (2006) Role of collagen enzymatic and glycation induced cross-links as a determinant of bone quality in spontaneously diabetic WBN/Kob rats. Osteoporos Int 17:1514–1523

    CAS  PubMed  Google Scholar 

  23. Patsch JM, Burghardt AJ, Yap SP, Baum T, Schwartz AV, Joseph GB, Link TM (2013) Increased cortical porosity in type 2 diabetic postmenopausal women with fragility fractures. J Bone Miner Res 28:313–324

    PubMed  Google Scholar 

  24. Dhaliwal R, Cibula D, Ghosh C, Weinstock RS, Moses AM (2014) Bone quality assessment in type 2 diabetes mellitus. Osteoporos Int 24:1969–1973

    Google Scholar 

  25. Yamamoto M, Yamauchi M, Sugimoto T (2019) Prevalent vertebral fracture is dominantly associated with spinal microstructural deterioration rather than bone mineral density in patients with type 2 diabetes mellitus. PLoS ONE 14:e0222571

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hygum K, Starup-Linde J, Harslof T, Vestergaard P, Langdahl BL (2017) Mechanisms in endocrinology: diabetes mellitus, a state of low bone turnover: a systematic review and meta-analysis. Eur J Endocrinol 176:R137–157

    CAS  PubMed  Google Scholar 

  27. Oei L, Zillikens MC, Dehghan A, Buitendijk GH, Castano-Betancourt MC, Estrada K, Stolk L, Oei EH, van Meurs JB, Janssen JA, Hofman A, van Leeuwen JP, Witteman JC, Pols HA, Uitterlinden AG, Klaver CC, Franco OH, Rivadeneira F (2013) High bone mineral density and fracture risk in type 2 diabetes as skeletal complications of inadequate glucose control: the rotterdam study. Diabetes Care 36:1619–1628

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Li CI, Liu CS, Lin WY, Meng NH, Chen CC, Yang SY, Chen HJ, Lin CC, Li TC (2015) Glycated hemoglobin level and risk of hip fracture in older people with type 2 diabetes: a competing risk analysis of Taiwan diabetes cohort study. J Bone Miner Res 30:1338–1346

    PubMed  Google Scholar 

  29. Hung YC, Lin CC, Chen HJ, Chang MP, Huang KC, Chen YH, Chen CC (2017) Severe hypoglycemia and hip fracture in patients with type 2 diabetes: a nationwide population-based cohort study. Osteoporos Int 28:2053–2060

    CAS  PubMed  Google Scholar 

  30. Majumdar SR, Leslie WD, Lix LM, Morin SN, Johansson H, Oden A, McCloskey EV, Kanis JA (2016) Longer duration of diabetes strongly impacts fracture risk assessment: the manitoba BMD cohort. J Clin Endocrinol Metab 101:4489–4496

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Schwartz AV, Sellmeyer DE, Ensrud KE, Cauley JA, Tabor HK, Schreiner PJ, Jamal SA, Black DM, Cummings SR, Study of osteoporotic features research group (2001) Older women with diabetes have an increased risk of fracture: a prospective study. J Clin Endocrinol Metab 86:32–38

    CAS  PubMed  Google Scholar 

  32. Loke YK, Singh S, Furberg CD (2009) Long-term use of thiazolidinediones and fractures in type 2 diabetes: a meta-analysis. CMAJ 180:32–39

    PubMed  PubMed Central  Google Scholar 

  33. Thraikill KM, Jo CH, Cockrell GE, Moreau CS, Fowlkes JL (2011) Enhanced excretion of vitamin D binding protein in type 1 diabetes: a role in vitamin D deficiency? J Clin Endocrinol Metab 96:142–149

    Google Scholar 

  34. Garcia-Martin A, Rozas-Moreno P, Reyes-Garcia R, Morales-Santana S, Garcia-Fontana B, Garcia-Salcedo JA, Munoz-Torres M (2012) Circulating levels of sclerostin are increased in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 97:234–241

    CAS  PubMed  Google Scholar 

  35. Gennari L, Merlotti D, Valenti R, Ceccarelli E, Ruvio M, Pietrini MG, Capodarca C, Franci MB, Campagna MS, Calabro A, Cataldo D, Stolakis K, Dotta F, Nuti R (2012) Circulating sclerostin levels and bone turnover in type 1 and type 2 diabetes. J Clin Endocrinol Metab 97:1737–1744

    CAS  PubMed  Google Scholar 

  36. Yamamoto M, Yamauchi M, Sugimoto T (2013) Elevated sclerostin levels are associated with vertebral fractures in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 98:4030–4037

    CAS  PubMed  Google Scholar 

  37. Wallander M, Axelsson KF, Nilsson AG, Lundh D, Lorentzon M (2017) Type 2 diabetes and risk of hip fractures and non-skeletal fall injuries in the elderly: a study from the fractures and fall injuries in the elderly cohort (FRAILCO). J Bone Miner Res 32:449–460

    CAS  PubMed  Google Scholar 

  38. Kanazawa I, Yamaguchi T, Yamauchi M, Yamamoto M, Kurioka S, Yano S, Sugimoto T (2009) Adiponectin is associated with changes in bone markers during glycemic control in type 2 diabetes mellitus. J Clin Endocrinol Metab 94:3031–3037

    CAS  PubMed  Google Scholar 

  39. Okazaki R, Totsuka Y, Hamano K, Ajima M, Miura M, Hirota Y, Hata K, Fukumoto S, Matsumoto T (1997) Metabolic improvement of poorly controlled noninsulin-dependent diabetes mellitus decreases bone turnover. J Clin Endocrinol Metab 82:2915–2920

    CAS  PubMed  Google Scholar 

  40. Schwartz AV, Margolis KL, Sellmeyer DE, Vittinghoff E, Ambrosius WT, Bonds DE, Josse RG, Schnall AM, Simmons DL, Hue TF, Palermo L, Hamilton BP, Green JB, Atkinson HH, O’Connor PJ, Force RW, Bauer DC (2012) Intensive glycemic control is not associated with fractures or falls in the ACOORD randomized trial. Diabetes Care 35:1525–1531

    PubMed  PubMed Central  Google Scholar 

  41. Ueki K, Sasako T, Okazaki Y, Kato M, Okahata S, Katsuyama H, Haraguchi M, Morita A, Ohashi K, Hara K, Morise A, Izumi K, Ishizuka N, Ohashi Y, Noda M, Kadowaki T, J-DOIT3 study group (2017) Effect of an intensified multifactorial intervention on cardiovascular outcomes and mortality in type 2 diabetes (J-DOIT3): an open-label, randomized controlled trial. Lancet Diabetes Endocrinol 5:951–964

    PubMed  Google Scholar 

  42. Giangregorio LM, Leslie WD, Lix LM, Johansson H, Oden A, McCloskey E, Kanis JA (2012) FRAX underestimates fracture risk in patients with diabetes. J Bone Miner Res 27:301–308

    PubMed  Google Scholar 

  43. Vestergaard P, Rejnmark L, Mosekilde L (2011) Are antiresorptive drugs effective against fractures in patients with diabetes? Calcif Tissue Int 88:209–214

    CAS  PubMed  Google Scholar 

  44. Inoue D, Muraoka R, Okazaki R, Nishizawa Y, Sugimoto T (2016) Efficacy and safety of risedronate in osteoporosis subjects with comorbid diabetes, hypertension, and/or dyslipidemia: a post hoc analysis of phase III trials conducted in Japan. Calcif Tissue Int 98:114–122

    CAS  PubMed  Google Scholar 

  45. Johnell O, Kanis JA, Black DM, Balogh A, Poor G, Sarkar S, Zhou C, Pavo I (2004) Associations between baseline risk factors and vertebral fracture risk in the multiple outcomes of raloxifene evaluation (MORE) study. J Bone Miner Res 19:764–772

    CAS  PubMed  Google Scholar 

  46. Ensrud KE, Stock JL, Barrett-Connor E, Grady D, Mosca L, Khaw KT, Zhao Q, Agnusdei D, Cauley JA (2008) Effects of raloxifene on fracture risk in postmenopausal women: the Raloxifene Use for the Heart Trial. J Bone Miner Res 23:112–120

    CAS  PubMed  Google Scholar 

  47. Schwartz AV, Pavo I, Alam J, Disch DP, Schuster D, Harris JM, Krege JH (2016) Teriparatide in patients with osteoporosis and type 2 diabetes. Bone 91:152–158

    CAS  PubMed  Google Scholar 

  48. Tanaka S, Mizutani H, Tsuruya E, Mochizuki Y, Kuge K, Okubo N (2018) Safety and efficacy of long-term denosumab treatment in Japanese patients with osteoporosis in daily clinical practice. Ther Res 39:453–465

    Google Scholar 

  49. Nickolas TL, McMahon DJ, Shane E (2006) Relationship between moderate to severe kidney disease and hip fracture in the United States. J Am Soc Nephrol 17:3223–3232

    PubMed  Google Scholar 

  50. Yajima A, Inaba M, Tominaga Y, Ito A (2007) Minimodeling reduces the rate of cortical bone loss in patients with secondary hyperparathyroidism. Am J Kidney Dis 49:440–451

    PubMed  Google Scholar 

  51. Dukas L, Schacht E, Stahelin HB (2005) In elderly men and women treated for osteoporosis a low creatinine clearance of <65 ml/min is a risk factor for falls and fractures. Osteoporos Int 16:1683–1690

    CAS  PubMed  Google Scholar 

  52. Ensrud KE, Lui LY, Taylor BC, Ishani A, Shlipak MG, Stone KL, Cauley JA, Jamal SA, Antoniucci DM, Cummings SR, Osteoporotic fractures research group (2007) Renal function and risk of hip and vertebral fractures in older women. Arch Intern Med 167:133–139

    PubMed  Google Scholar 

  53. Naylor KL, Garg AX, Zou G, Langsetmo L, Leslie WD, Fraser LA, Adachi JD, Morin S, Goltzman D, Lentle B, Jackson SA, Josse RG, Jamal SA (2015) Comparison of fracture risk prediction among individuals with reduced and normal kidney function. Clin J Am Soc Nephrol 10:646–653

    PubMed  PubMed Central  Google Scholar 

  54. Fried LF, Briggs ML, Shlipak MG, Seliger S, Kestenbaum B, Stehman-Breen C, Samak M, Siscovick D, Harris T, Cauley J, Newman AB, Robbins J (2007) Association of kidney function with incident hip fracture in older adults. J Am Soc Nephrol 18:282–286

    PubMed  Google Scholar 

  55. La Croix AZ, Lees JS, Wu L, Cauley JA, Shlipak MG, Ott SM, Robbins J, Curb JD, Leboff M, Bauer DC, Jackson RD, Kooperberg CL, Cummings SR, Women’s health intiative observational (2008) Cystatin-C renal function, and incidence of hip fracture in postmenopausal women. J Am Geriatr Soc 56:1434–1441

    Google Scholar 

  56. Naylor KL, McArthur E, Lesilie WD, Fraser LA, Jamal SA, Cadarette SM, Pouget JG, Lok CE, Hodsman AB, Adachi JD, Garg AX (2014) The three-year incidence of fracture in chronic kidney disease. Kidney Int 86:810–818

    PubMed  Google Scholar 

  57. Kaji H, Yamauchi M, Yamaguchi T, Shigematsu T, Sugimoto T (2010) Mild renal dysfunction is a risk factor for a decrease in bone mineral density and vertebral fractures in Japanese postmenopausal women. J Clin Endocrinol Metab 95:4635–4642

    CAS  PubMed  Google Scholar 

  58. Elliot MJ, James MT, Quinn RR, Ravani P, Tonelli M, Palacios-Derflingher L, Tan Z, Manns BJ, Kline GA, Ronksley PE, Hemmelgarn BR (2013) Estimated GFR and fracture risk: a population-based study. Clin J Am Soc Nephrol 8:1367–1376

    Google Scholar 

  59. Yenchek RH, Ix JH, Shlipak MG, Bauer DC, Rianon NJ, Kritchevsky SB, Harris TB, Newman AB, Cauley JA, Fried LF, Health, aging, and body composition study (2012) Bone mineral density and fracture risk in older individuals with CKD. Clin J Am Soc Nephrol 7:1130–1136

    CAS  PubMed  PubMed Central  Google Scholar 

  60. West SL, Lok CE, Langsetmo L, Cheung AM, Szabo E, Pearce D, Fusaro M, Wald R, Weinstein J, Jamal SA (2015) Bone mineral density predicts fractures in chronic kidney disease. J Bone Miner Res 30:913–919

    PubMed  Google Scholar 

  61. Iimori S, MoriY AW, Kuyama T, Takada S, Asai T, Kuwahara M, Sasaki S, Tsukamoto Y (2012) Diagnostic usefulness of bone mineral density and biochemical markers of bone turnover in predicting fracture in CKD stage 5D patients: a single-center cohort study. Nephrol Dial Transplant 27:345–351

    CAS  PubMed  Google Scholar 

  62. Kurajoh M, Inaba M, Nagata Y, Yamada S, Imanishi Y, Emoto M (2019) Association of cystatin C- and creatinine-based eGFR with osteoporotic fracture in Japanese postmenopausal women with osteoporosis: sarcopenia as risk for fracture. J Bone Miner Metab 37:282–291

    CAS  PubMed  Google Scholar 

  63. Moen MF, Zhan M, Hsu VD, Walker LD, Einhorn LM, Seliger SL, Fink JC (2009) Frequency of hypoglycemia and its significance in chronic kidney disease. Clin J Am Soc Nephrol 4:1121–1127

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Disease K (2011) Improving global outcomes (KDIGO) CKD-MBD update work group (2017) KDIGO 2017 clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int Suppl 7:1–59

    Google Scholar 

  65. Amerling R, Harbord NB, Pullman J, Eeinfeld DA (2010) Bisphosphonate use in chronic kidney disease: association with adynamic bone disease in a bone histology series. Blood Purif 29:293–299

    CAS  PubMed  Google Scholar 

  66. Miyaoka D, Imanishi Y, Ohara M, Hayashi N, Nagata Y, Yamada S, Mori K, Emoto M, Inaba M (2019) Impaired residual renal function predicts denosumab-induced serum calcium decrement as well as increment of bone mineral density in non-severe renal insufficiency. Osteoporos Int 30:241–249

    CAS  PubMed  Google Scholar 

  67. Dennison EM, Compston JE, Flahive J, Siris ES, Gehlbach SH, Adachi JD, Boonen S, Chapurlat R, Diez-Perez A, Anderson FA Jr, Hooven FH, LaCroix AZ, Lindsay R, Netelenbos JC, Pfeilschifter J, Rossini M, Roux C, Saag KG, Sambrook P, Silverman S, Watts NB, Greenspan SL, Premaor M, Cooper C, Investigators GLOW (2012) Effect of co-morbidities on fracture risk: findings from the Global Longitudinal Study of Osteoporosis in Women (GLOW). Bone 50:1288–1293

    PubMed  PubMed Central  Google Scholar 

  68. Hippisley-Cox J, Coupland C (2012) Derivation and validation of updated QFracture algorithm to predict risk of osteoporosis in primary care in the United Kingdom: prospective open cohort study. BMJ 344:e3427

    PubMed  Google Scholar 

  69. de Vries F, van Staa TP, Bracke MS, Cooper C, Leufkens HG, Lammers JW (2005) Severity of obstructive airway disease and risk of osteoporotic fracture. Eur Respir J 25:879–884

    PubMed  Google Scholar 

  70. Vestergaard P, Rejnmark L, Mosekilde L (2007) Fracture risk in patients with chronic lung diseases treated with bronchodilator drugs and inhaled and oral corticosteroids. Chest 132:1599–1607

    CAS  PubMed  Google Scholar 

  71. Graat-Verboom L, Wouters EF, Smeenk FW, van den Borme BE, Lunde R, Spruit MA (2009) Current status of research on osteoporosis in COPD: a systematic review. Eur Respir J 34:209–218

    CAS  PubMed  Google Scholar 

  72. Inoue D, Watanabe R, Okazaki R (2016) COPD and osteoporosis: links, risks, and treatment challenges. Int J Chron Obstruct Pulmon Dis 11:637–648

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Watanabe R, Tanaka T, Aita K, Hagiya M, Homma T, Yokosuka K, Yamakawa H, Yarita T, Tai N, Hirano J, Inoue D, Okazaki R (2015) Osteoporosis is highly prevalent in Japanese males with chronic obstructive pulmonary disease and is associated with deteriorated pulmonary function. J Bone Miner Metab 33:392–400

    PubMed  Google Scholar 

  74. McEvoy CE, Ensrud KE, Bender E, Genant HK, Yu W, Griffith JM, Niewoehner DE (1998) Association between corticosteroid use and vertebral fractures in older men with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 157:704–709

    CAS  PubMed  Google Scholar 

  75. Watanabe R, Shiraki M, Saito M, Okazaki R, Inoue D (2018) Restrictive pulmonary dysfunction is associated with vertebral fractures and bone loss in elderly postmenopausal women. Osteoposos Int 29:625–633

    CAS  Google Scholar 

  76. Graat-Verboom L, van den Borne BE, Smeenk FW, Spruit MA, Wouters EF (2011) Osteoporosis in COPD outpatients based on bone mineral density and vertebral fractures. J Bone Miner Res 26:561–568

    PubMed  Google Scholar 

  77. Kulak CA, Borba VC, Jorgetti V, Dos Reis LM, Liu XS, Kimmel DB, Kulak J Jr, Rabelo LM, Zhou H, Guo XE, Bilezikian JP, Boguszewski CL, Dempster DW (2010) Skeletal microstructural abnormalities in postmenopausal women with chronic obstructive pulmonary disease. J Bone Miner Res 25:1931–1940

    PubMed  Google Scholar 

  78. Watanabe R, Tai N, Hirano J, Ban Y, Inoue D, Okazaki R (2018) Independent association of bone mineral density and trabecular bone score to vertebral fracture in male subjects with chronic obstructive pulmonary disease. Osteoporos Int 29:615–623

    CAS  PubMed  Google Scholar 

  79. Fimognari FL, Loffredo L, Di Simone S, Sampietro F, Pastorelli R, Monald M, Violi F, D’Angelo A (2009) Hyperhomocysteinaemia and poor vitamin B status in chronic obstructive pulmonary disease. Nutr Metab Cardiovasc Dis 19:654–659

    CAS  PubMed  Google Scholar 

  80. Loke YK, Cavallazzi R, Singh S (2011) Risk of fractures with inhaled corticosteroids in COPD: systematic review and meta-analysis of randomised controlled trials and observational studies. Thorax 66:699–708

    PubMed  Google Scholar 

  81. Lu PC, Yang YH, Guo SE, Yang TM (2017) Factors associated with osteoporosis in patients with chronic obstructive pulmonary disease-a nationwide retrospective study. Osteoporos Int 28:359–367

    PubMed  Google Scholar 

  82. Mathioudakis AG, Amanetopoulou SG, Gialmanidis IP, Chatzimavridou-Grigoriadou V, Siasos G, Evangelopoulou E, Mathioudakis GA (2013) Impact of long-term treatment with low-dose inhaled corticosteroids on the bone mineral density of chronic obstructive pulmonary disease patients: aggravating or beneficial? Respirology 18:147–153

    PubMed  Google Scholar 

  83. Mineo TC, Ambrogi V, Mineo D, Fabbri A, Fabbrini E, Massoud R (2005) Bone mineral density improvement after lung volume reduction surgery for severe emphysema. Chest 127:1960–1966

    PubMed  Google Scholar 

  84. Thorin MH, Wihlborg A, Akesson K, Gerdhem P (2016) Smoking, smoking cessation, and fracture risk in elderly women followed for 10 years. Osteoporos Int 27:249–255

    CAS  PubMed  Google Scholar 

  85. Shen GS, Li Y, Zhao G, Zhou HB, Xie ZG, Xu W, Chen HN, Dong QR, Xu YJ (2015) Cigarette smoking and risk of hip fracture in women: a meta-analysis of prospective cohort studies. Injury 46:1333–1340

    PubMed  Google Scholar 

  86. Saito M, Marumo K (2018) The effect of homocysteine on skeleton. Curr Osteoporos Rep 16:554–560

    PubMed  Google Scholar 

  87. Saito M, Kida Y, Nishizawa T, Arakawa S, Okabe H, Seki A, Marumo K (2015) Effects of 18-month treatment with bazedoxifene on enzymatic immature and mature cross-links and non-enzymatic advanced glycation end products, mineralization, and trabecular microarchitecture of vertebra in ovariectomized monkeys. Bone 81:573–580

    CAS  PubMed  Google Scholar 

  88. Kimura S, Saito M, Kida Y, Seki A, Isaka Y, Marumo K (2017) Effects of raloxifene and alendronate on non-enzymatic collagen cross-links and bone strength in ovariectomized rabbits in sequential treatments after daily human parathyroid hormone (1–34) administration. Osteoporos Int 28:1109–1119

    CAS  PubMed  Google Scholar 

  89. Saito M, Marumo K, Soshi S, Kida Y, Ushiku C, Shinohara A (2010) Raloxifene ameliorates detrimental enzymatic and nonenzymatic collagen cross-links and bone strength in rabbits with hyperhomocysteinemia. Osteoporos Int 21:655–666

    CAS  PubMed  Google Scholar 

  90. Walsh BW, Paul S, Wild RA, Dean RA, Tracy RP, Cox DA, Anderson PW (2000) The effects of hormone replacement therapy and raloxifene on C-reactive protein and homocysteine in healthy postmenopausal women: a randomized, controlled trial. J Clin Endocrinol Metab 85:214–218

    CAS  PubMed  Google Scholar 

  91. De Leo V, la Marca A, Morgante G, Lanzetta D, Setacci C, Petraglia F (2001) Randomized control study of the effects of raloxifene on serum lipids and homocysteine in older women. Am J Obstet Gynecol 184:350–353

    PubMed  Google Scholar 

  92. Kanazawa I, Tomita T, Miyazaki S, Ozawa E, Yamamoto LA, Sugimoto T (2017) Bazedoxifene ameliorates homocysteine-induced apoptosis and accumulation of advanced glycation end products by reducing oxidative stress in MC3T3-E1 cells. Calcif Tissue Int 100:286–297

    CAS  PubMed  Google Scholar 

  93. Saito m, Mori S, Mashiba T, Komatsubara S, Marumo K (2008) Collagen maturity, glycation induced-pentosidine, and mineralization are increased following 3-year treatment with incadronate in dogs. Osteoporos Int 19:1343–1354

    CAS  PubMed  Google Scholar 

  94. Mashiba T, Saito M, Tanaka YY, M, Iwata K, Yamamoto T, (2017) Effects of suppressed bone remodeling by minodronic acid and alendronate on bone mass, microdamage accumulation, collagen crosslinks and bone mechanical properties in the lumbar vertebra of ovariectomized cynomolgus monkeys. Bone 97:184–191

    CAS  PubMed  Google Scholar 

  95. Anagnostis P, Paschou SA, Gkekas NN, Artzouchaltzi AM, Christou K, Stogiannou D, Vryonidou A, Potoupnis M, Goulis DG (2018) Efficacy of anti-osteoporotic medications in patients with type 1 and 2 diabetes mellitus: a systematic review. Endocrine 60:373–383

    CAS  PubMed  Google Scholar 

  96. Schwartz AV (2017) Efficacy of osteoporosis therapies in diabetic patients. Calcif Tissue Int 100:165–173

    CAS  PubMed  Google Scholar 

  97. Inoue D, Muraoka R, Okazaki R, Nishizawa Y (2016) Sugimoto T (2016) Efficacy and safety of risedronate in osteoporosis subjects with comorbid diabetes, hypertension, and/or dyslipidemia: a post hoc analysis of phase III trials conducted in Japan. Calcif Tissue Int 98:114–122

    CAS  PubMed  Google Scholar 

  98. Shiraki M, Kuroda T, Shiraki Y, Tanaka S, Higuchi T, Saito M (2011) Urinary pentosidine and plasma homocysteine levels at baseline predict future fractures in osteoporosis patients under bisphosphonate treatment. J Bone Miner Metab 29:62–70

    CAS  PubMed  Google Scholar 

  99. Nagaoka H, Mochida Y, Atsawasuwan P, Kaku M, Kondoh T, Yamaguchi M (2008) 1,25(OH)2D3 regulates collagen quality in an osteoblastic cell culture system. Biochem Biophys Res Commun 377:674–678

    CAS  PubMed  Google Scholar 

  100. Saito M, Shiraishi A, Ito M, Sakai S, Hayakawa N, Mihara M, Marumo K (2010) Comparison of effects of alfacalcidol and alendronate on mechanical properties and bone collagen cross-links of callus in the fracture repair rat model. Bone 46:1170–1179

    CAS  PubMed  Google Scholar 

  101. Saito M, Grynpas MD, Burr DB, Allen MR, Smith SY, Doyle N, Amizuka N, Hasegawa T, Kida Y, Marumo K, Saito H (2015) Treatment with eldecalcitol positively affects mineralization, microdamage, and collagen crosslinks in primate bone. Bone 73:8–15

    CAS  PubMed  Google Scholar 

  102. Saito M, Marumo K, Kida Y, Ushiku C, Kato S, Takao-Kawabata R, Kuroda T (2011) Changes in the contents of enzymatic immature, mature, and no-enzymatic senescent cross-links of collagen after once-weekly treatment with human parathyroid hormone (1–34) for 18 months contribute to improvement of bone strength in ovariectomized monkeys. Osteoporos Int 22:2373–2383

    CAS  PubMed  Google Scholar 

  103. Yoshitake S, Mashiba T, Saito M, Fujihara R, Iwata K, Takao-Kawabata R, Yamamoto T (2019) Once-weekly teriparatide treatment prevents microdamage accumulation in the lumbar vertebral trabecular bone of ovariectomized cynomolgus monkeys. Calcif Tissue Int 104:402–410

    CAS  PubMed  Google Scholar 

  104. Saag KG, Petersen J, Brandi ML, Karaplis AC, Lorentzon M, Thomas T, Maddox J, Fan M, Meisner PD, Grauer A (2017) Romosozumab or alendronate for fracture prevention in women with osteoporosis. N Engl J Med 377:1417–1427

    CAS  PubMed  Google Scholar 

Download references

Funding

This paper did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Ippei Kanazawa.

Ethics declarations

Conflict of interest

IK has received research grants from MSD, Teijin pharma, and Novartis. MI has received research grants from Chugai Pharmaceutical, Kyowa-Kirin Co, Asahi Kasei Pharma, Ono Pharmaceutical, Novartis Pharma, Bayer Pharmaceutical, Roche DC Japan, Sumitomo Dainippon Pharma, Teijin Pharma, Takeda Pharmaceutical, and lecture and/or consulting fees from Chugai Pharmaceutical, Pfizer Inc, Bayer Pharmaceutical, Kyowa-Kirin Co, Kissei, Torii Pharmaceutical, Daiichi-Sankyo, and Ono Pharmaceutical. DI has received lecture and/or consulting fees from EA Pharma, Astellas Pharma, Asahi Kasei Pharma, Chugai Pharmaceutical, Daiichi-Sankyo Co., Ono Pharmaceutical and Teijin Pharma. MS has received research grants from Chugai Pharmaceutical Asahi Kasei Pharma and lecture fees from Chugai Pharmaceutical Astellas Amgen Biopharma Pfizer Inc Eli Lilly Daiichi-Sankyo Taisho Pharma Teijin Pharma and Asahi Kasei Pharma. MS has received consultant fee from Teijin pharma Co., Asahi Kasei Pharma Co, Daiichi-Sankyo. AS has received research grants from Kowa, Ono Pharmaceutical, Taisho Pharmaceutical, Chugai Pharmaceutical and Takeda Pharmaceutical, as well as lecture and/or consulting fees from Asahi Kasei Pharma, Astellas Pharma, Daiichi-Sankyo, Kyowa Kirin, Taisho Pharmaceutical, Chugai Pharmaceutical and Eli Lilly Japan. YT has received personal fees from Chugai, Daiichi-Sankyo, Teijin Pharma, Asahi Kasei Pharma and Kyowa Kirin. HH has received grants/research support or lecture fees from Asahi Kasei Pharma, Astellas Pharma, Chugai, Daiichi-Sankyo, Eisai, Eli Lilly Japan, Mitsubishi Tanabe, Merck Sharp & Dohme, Mochida, Ono, Pfizer, Taisho Toyama Pharmaceutical, and Teijin Pharma. SF has received lecture fees from Teijin, Nippon-Zoki, and Astellas Amgen Japan. TS has received research grants from Astellas Pharma, Eisai, Daiichi-Sankyo, Chugai Pharmaceutical and Eli Lilly Japan, as well as lecture and/or consulting fees from Asahi Kasei Pharma and Daiichi-Sankyo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanazawa, I., Inaba, M., Inoue, D. et al. Executive summary of clinical practice guide on fracture risk in lifestyle diseases. J Bone Miner Metab 38, 746–758 (2020). https://doi.org/10.1007/s00774-020-01149-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-020-01149-3

Keywords

Navigation